AI Article Synopsis

  • * Researchers designed and synthesized three guest components (ANF-1, ANF-2, ANF-3) with varying electrostatic potentials to investigate their impact on a specific host system (D18:N3).
  • * Findings suggest that a larger electrostatic potential difference between the guest and host improves intermolecular interactions, increases luminescent efficiency, and reduces voltage loss, which is crucial for achieving high efficiency in OSCs.

Article Abstract

The ternary strategy, in which one guest component is introduced into one host binary system, is considered to be one of the most effective ways to realize high-efficiency organic solar cells (OSCs). To date, there is no efficient method to predict the effectiveness of guest components in ternary OSCs. Herein, three guest compositions (i.e., ANF-1, ANF-2 and ANF-3) with different electrostatic potential (ESP) are designed and synthesized by modulating the electron-withdrawing ability of the terminal groups through density functional theory simulations. The effects of the introduction of guest component into the host system (D18:N3) on the photovoltaic properties are investigated. The theoretical and experimental studies provide a key rule for guest acceptor in ternary OSCs to improve the open-circuit voltage, that is, the larger ESP difference between the guest and host acceptor, the stronger the intermolecular interactions and the higher the miscibility, which improves the luminescent efficiency of the blend film and the electroluminescence quantum yield (EQE) of the device by reducing the aggregation-caused-quenching, thereby effectively decreasing the non-radiative voltage loss of ternary OSCs. This work will greatly contribute to the development of highly efficient guest components, thereby promoting the rapid breakthrough of the 20% efficiency bottleneck for single-junction OSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202401789DOI Listing

Publication Analysis

Top Keywords

ternary oscs
12
guest
8
electrostatic potential
8
organic solar
8
solar cells
8
guest component
8
guest components
8
ternary
5
oscs
5
guest acceptors
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!