Several members of the transforming growth factor beta (TGF-β) superfamily regulate the proliferation, differentiation, and function of bone-forming osteoblasts and bone-resorbing osteoclasts. However, it is still unknown whether Nodal, a member of the TGF-β superfamily, serves a function in bone cells. In this study, we found that Nodal did not have any function in osteoblasts but instead negatively regulated osteoclast differentiation. Nodal inhibited RANKL-induced osteoclast differentiation by downregulating the expression of pro-osteoclastogenic genes, including c-fos, Nfatc1, and Blimp1, and upregulating the expression of antiosteoclastogenic genes, including Bcl6 and Irf8. Nodal activated STAT1 in osteoclast precursor cells, and STAT1 downregulation significantly reduced the inhibitory effect of Nodal on osteoclast differentiation. These findings indicate that Nodal activates STAT1 to downregulate or upregulate the expression of pro-osteoclastogenic or antiosteoclastogenic genes, respectively, leading to the inhibition of osteoclast differentiation. Moreover, the inhibitory effect of Nodal on osteoclast differentiation contributed to the reduction of RANKL-induced bone loss in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcp.31268 | DOI Listing |
Phytomedicine
December 2024
Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China. Electronic address:
Object: Rheumatoid arthritis (RA) is a prevalent and currently incurable autoimmune disease. Existing conventional medical treatments are limited in their efficacy, prolonged disease may lead to bone destruction, joint deformity, and loss of related functions, which places a huge burden on RA patients and their families. For millennia, the use of traditional Chinese medicine (TCM), exemplified by the Gui-Zhi-Shao-Yao-Zhi-Mu decoction (GZSYZM), has been demonstrated to offer distinct therapeutic advantages in the management of RA.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
December 2024
Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea.
Probiotics are known to have favorable effects on human health. Nevertheless, probiotics are not always beneficial and can cause unintended adverse effects such as bacteremia and/or inflammation in immunocompromised patients. In the present study, we investigated the effects of probiotics on the regulation of bone metabolism under different health conditions and delivery routes.
View Article and Find Full Text PDFMetabolites
December 2024
Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria 0031, South Africa.
Objective: Ensuring adequate bone health is crucial for preventing conditions such as osteoporosis and fractures. Zingerone, a phytonutrient isolated from cooked ginger, has gained attention for its potential benefits in bone health. This study evaluated the osteoprotective potential of zingerone and its effects on differentiation and signalling pathways using SAOS-2 osteosarcoma and RAW264.
View Article and Find Full Text PDFFront Mol Biosci
December 2024
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
Introduction: Largemouth bass is an economically important farmed freshwater fish species that has delicious meat, no intermuscular thorns, and rapid growth rates. However, the molecular regulatory mechanisms underlying the different growth and developmental stages of this fish have not been reported.
Methods: In this study, we performed histological and transcriptomic analyses on the brain and dorsal muscles of largemouth bass at different growth periods.
J Adv Res
December 2024
Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China. Electronic address:
Introduction: Inflammatory diseases, such as diabetes mellitus, rheumatoid arthritis, and inflammatory bowel disease, lead to systemic immune microenvironment disturbances, contributing to bone loss, yet the mechanisms by which specific receptors regulate this process in inflammatory bone loss remain poorly understood. As a G-protein-coupled receptor, the Apelin receptor plays a crucial role in the regulation of inflammation and immune microenvironment. However, the precise mechanisms governing its role in inflammatory bone loss remain incompletely understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!