Sse1 is a cytosolic Hsp110 molecular chaperone of yeast, Saccharomyces cerevisiae. Its multifaceted roles in cellular protein homeostasis as a nucleotide exchange factor (NEF), as a protein-disaggregase and as a chaperone linked to protein synthesis (CLIPS) are well documented. In the current study, we show that SSE1 genetically interacts with IRE1 and HAC1, the endoplasmic reticulum-unfolded protein response (ER-UPR) sensors implicating its role in ER protein homeostasis. Interestingly, the absence of this chaperone imparts unusual resistance to tunicamycin-induced ER stress which depends on the intact Ire1-Hac1 mediated ER-UPR signaling. Furthermore, cells lacking SSE1 show inefficient ER-stress-responsive reorganization of translating ribosomes from polysomes to monosomes that drive uninterrupted protein translation during tunicamycin stress. In consequence, the sse1Δ strain shows prominently faster reversal from ER-UPR activated state indicating quicker restoration of homeostasis, in comparison to the wild-type (WT) cells. Importantly, Sse1 plays a critical role in controlling the ER-stress-mediated cell division arrest, which is escaped in sse1Δ strain during chronic tunicamycin stress. Accordingly, sse1Δ strain shows significantly higher cell viability in comparison to WT yeast imparting the stark fitness following short-term as well as long-term tunicamycin stress. These data, all together, suggest that cytosolic chaperone Sse1 is an important modulator of ER stress response in yeast and it controls stress-induced cell division arrest and cell death during overwhelming ER stress induced by tunicamycin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11152076 | PMC |
http://dx.doi.org/10.1093/g3journal/jkae075 | DOI Listing |
Int J Mol Sci
December 2024
Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110161, China.
Stress on the Endoplasmic reticulum (ER) can severely disrupt cellular function by impairing protein folding and post-translational modifications, thereby leading to the accumulation of poor-quality proteins. However, research on its impact on photosynthesis remains limited. In this study, we investigated the impact of ER stress on the photosynthetic efficiency of Chlamydomonas reinhardtii using pharmacological inducers, tunicamycin (TM) and brefeldin A (BFA), which specifically target the ER.
View Article and Find Full Text PDFAnim Reprod Sci
December 2024
China-Japan Union Hospital of Jilin University, Rehabilitation Medicine Department, Changchun, Jilin, China. Electronic address:
Assisted reproductive technology (ART) is widely used to address infertility and enhance reproductive outcomes in livestock. Among various ART techniques, in vitro maturation (IVM) is commonly used to obtain high-quality oocytes but is susceptible to oxidative stress. In traditional Chinese medicine, Rhizoma Atractylodis Macrocephalae (Bai Zhu) is used to enhance maternal and fetal health.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Knee Surgery, The First Hospital of Hebei Medical University, Hebei, China.
Objective: This study aims to explore the potential role of mesenchymal stem cells (MSCs) in the treatment of osteoarthritis (OA), particularly the function of the NOTCH1 signaling pathway in maintaining the stemness of MSCs and in chondrocyte differentiation.
Methods: Utilizing diverse analytical techniques on an osteoarthritis dataset, we unveil distinct gene expression patterns and regulatory relationships, shedding light on potential mechanisms underlying the disease. Techniques used include the culture of MSCs, induction of differentiation into chondrocytes, establishment of stable cell lines, Western Blot, and immunofluorescence.
Int Immunopharmacol
December 2024
Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, PR China. Electronic address:
The aim of this study was to evaluate for the effects of forsythiaside A (FA) on myocardial injury in streptozotocin (STZ)-induced diabetes mice. Blood glucose (BG), serum triglycerides (TG), lactate dehydrogenase (LDH), creatine kinase isoenzyme (CK-MB), cardiac troponin (cTnI), malondialdehyde (MDA), superoxide dismutase (SOD) levels were detected in STZ mice. The structure and function of heart was observed via cardiac ultrasound.
View Article and Find Full Text PDFDev Neurobiol
January 2025
Department of Cerebrovascular Surgery, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China.
Growth differentiation factor 15 (GDF15) can be induced under various stress conditions. This study aimed to explore the role of GDF15 in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced HT22 cells. OGD/R was employed to induce the HT22 cell model, and GDF15 expression was upregulated via transfection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!