Objective: Previous studies have revealed that Propane-2-sulfonic acid octadec-9-enyl-amide(N15) exerts a protective role in the inflammatory response after ischemic stroke and in neuronal damage. However, little is known about N15 in Alzheimer's disease (AD). The aim of this study was to investigate the effects of N15 on AD and explore the underlying molecular mechanism.
Methods: AD mice model was established by lateral ventricular injection with Aβ. N15 was daily intraperitoneal administered for 28 days. Morris Water Maze was used to evaluate the neurocognitive function of the mice. The expression of PPARα/γ, brain-derived neurotrophic factor (BDNF), Neurotrophin-3 (NT3), ADAM10, PS1 and BACE1 were measured by qPCR. Aβ amyloid in the hippocampus was measured by Congo red assay. Toluidine blue staining was used to detect the neuronal apoptosis. Protein levels of ADAM10, PS1 and BACE1 were determined using immunoblotting.
Results: N15 treatment significantly reduced neurocognitive dysfunction, which also significantly activated the expression of PPARα/γ at an optimal dose of 200 mg/kg. Administration of N15 alleviated the formation of Aβ amyloid in the hippocampus of AD mice, enhanced the BDNF mRNA expression, decreased the mRNA and protein levels of PS1 and BACE1, upregulated ADAM10 mRNA and protein levels.
Conclusion: N15 exerts its neuroprotective effects through the activation of PPARα/γ and may be a potential drug for the treatment of AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/01616412.2024.2325313 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!