NADPH oxidase-mediated sulfenylation of cysteine derivatives regulates plant immunity.

J Exp Bot

Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.

Published: August 2024

Reactive oxygen species (ROS) are rapidly generated during plant immune responses by respiratory burst oxidase homolog (RBOH), which is a plasma membrane-localized NADPH oxidase. Although regulatory mechanisms of RBOH activity have been well documented, the ROS-mediated downstream signaling is unclear. We here demonstrated that ROS sensor proteins play a central role in ROS signaling via oxidative post-translational modification of cysteine residues, sulfenylation. To detect protein sulfenylation, we used dimedone, which specifically and irreversibly binds to sulfenylated proteins. The sulfenylated proteins were labeled by dimedone in Nicotiana benthamiana leaves, and the conjugates were detected by immunoblot analyses. In addition, a reductant dissociated H2O2-induced conjugates, suggesting that cysteine persulfide and/or polysulfides are involved in sulfenylation. These sulfenylated proteins were continuously increased during both pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) in a RBOH-dependent manner. Pharmacological inhibition of ROS sensor proteins by dimedone perturbated cell death, ROS accumulation induced by INF1 and MEK2DD, and defense against fungal pathogens. On the other hand, Rpi-blb2-mediated ETI responses were enhanced by dimedone. These results suggest that the sulfenylation of cysteine and its derivatives in various ROS sensor proteins are important events downstream of the RBOH-dependent ROS burst to regulate plant immune responses.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erae111DOI Listing

Publication Analysis

Top Keywords

ros sensor
12
sensor proteins
12
sulfenylated proteins
12
sulfenylation cysteine
8
cysteine derivatives
8
plant immune
8
immune responses
8
ros
7
proteins
6
sulfenylation
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!