Intranasal Delivery of Curcumin Nanoparticles Improves Neuroinflammation and Neurological Deficits in Mice with Intracerebral Hemorrhage.

Small Methods

Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.

Published: December 2024

Intracerebral hemorrhage (ICH) represents one of the most severe subtypes of stroke. Due to the complexity of the brain injury mechanisms following ICH, there are currently no effective treatments to significantly improve patient functional outcomes. Curcumin, as a potential therapeutic agent for ICH, is limited by its poor water solubility and oral bioavailability. In this study, mPEG-PCL is used to encapsulate curcumin, forming curcumin nanoparticles, and utilized the intranasal administration route to directly deliver curcumin nanoparticles from the nasal cavity to the brain. By inhibiting pro-inflammatory neuroinflammation of microglia following ICH in mice, reprogramming pro-inflammatory microglia toward an anti-inflammatory function, and consequently reducing neuronal inflammatory death and hematoma volume, this approach improved blood-brain barrier damage in ICH mice and promoted the recovery of neurological function post-stroke. This study offers a promising therapeutic strategy for ICH to mediate neuroinflammatory microenvironments.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smtd.202400304DOI Listing

Publication Analysis

Top Keywords

curcumin nanoparticles
12
intracerebral hemorrhage
8
ich mice
8
ich
6
curcumin
5
intranasal delivery
4
delivery curcumin
4
nanoparticles improves
4
improves neuroinflammation
4
neuroinflammation neurological
4

Similar Publications

Development of Antibacterial Hydrogels Based on Biopolymer Aloe Vera/Gelatin/Sodium Alginate Composited With SM-AgNPs Loaded Curcumin-Nanoliposomes.

Macromol Biosci

January 2025

Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.

To address the rising prevalence of bacterial infections and the need for innovative therapeutic solutions, this study has developed a novel antibacterial hydrogel composite composed of Aloe vera, gelatin, sodium alginate, and Sterculia monosperma-silver nanoparticles (SM-AgNPs) loaded curcumin-nanoliposomes (NLPs). The aloe vera/gelatin/sodium alginate hydrogels (AGS) are prepared using different weight ratios of Aloe vera, gelatin, and sodium alginate, aiming to optimize mechanical properties and biocompatibility for biomedical applications. The incorporation of SM-AgNPs and curcumin-loaded NLPs enhanced the hydrogels' antibacterial properties.

View Article and Find Full Text PDF

Cancers still globally endanger millions of people yearly; the incidences/mortalities of colorectal cancers are particularly increasing. The natural nanoparticles (NPs) and marine biopolymers were anticipated to provide effectual safe significances for managing cancers. The transformation of curcumin to nano-curcumin (NCur) was conducted with gum Arabic.

View Article and Find Full Text PDF

Programmable Food-Derived Peptide Coassembly Strategies for Boosting Targeted Colitis Therapy by Enhancing Oral Bioavailability and Restoring Gut Microenvironment Homeostasis.

ACS Nano

January 2025

Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.

Orally targeting nanostrategies of multiple nutraceuticals have attracted increasing attention in ulcerative colitis (UC) therapy for superior patient compliance, cost-effectiveness, and biocompatibility. However, the actual targeting delivery and bioefficacy of nutraceuticals are extremely restricted by their poor solubility, interior gastrointestinal retention, and base permeability. Herein, we developed controllable colon-targeting nanoparticles (NPs) composed of a quaternary ammonium chitosan (HTCC) shell and succinic acid-modified γ-cyclodextrin (SACD) core for precise UC treatment.

View Article and Find Full Text PDF

Full-thickness skin wounds remian a significant and pressing challenge. In this study, we introduce a novel composite hydrogel, CS + GA + Zn-HA. This hydrogel is formulated by incorporating 1 % (1 g/100 mL) of bioactive Zinc-substituted hydroxyapatite nanoparticles (Zn-HA) and 0.

View Article and Find Full Text PDF

In this study, chitosan/curcumin (CS/Cur) and chitosan/papain (CS/Pa) nanoparticles were prepared and then characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), and differential light scattering (DLS). Subsequently, release rate, porosity, swelling, degradability, anti-inflammatory, antioxidant, antibacterial, and cell viability tests were conducted to investigate and compare the healing potential of the nanoparticles for various types of wounds. The results of FTIR, XRD, and DLS indicated that the nanoparticles were manufactured correctly with a hydrodynamic diameter of 429 nm (CS/Cur) and 460 nm (CS/Pa), and zeta potential of 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!