Aims: An intrinsic feature of gene transcription is the formation of DNA superhelices near the transcription bubble, which are resolved upon induction of transient double-stranded breaks (DSBs) by topoisomerases. Unrepaired DSBs are pathogenic as they lead to cell cycle arrest, senescence, inflammation, and organ dysfunction. We posit that DSBs would be more prevalent at the genomic sites that are associated with gene expression. The objectives were to identify and characterize genome-wide DSBs at the nucleotide resolution and determine the association of DSBs with transcription in cardiac myocytes.
Methods And Results: We identified the genome-wide DSBs in ∼1 million cardiac myocytes per heart in three wild-type and three myocyte-specific LMNA-deficient (Myh6-Cre:LmnaF/F) mice by END-Sequencing. The prevalence of DSBs was 0.8% and 2.2% in the wild-type and Myh6-Cre:LmnaF/F myocytes, respectively. The END-Seq signals were enriched for 8 and 6764 DSBs in the wild-type and Myh6-Cre:LmnaF/F myocytes, respectively (q < 0.05). The DSBs were preferentially localized to the gene regions, transcription initiation sites, cardiac transcription factor motifs, and the G quadruplex forming structures. Because LMNA regulates transcription through the lamin-associated domains (LADs), we defined the LADs in cardiac myocytes by a Cleavage Under Targets & Release Using Nuclease (CUT&RUN) assay (N = 5). On average there were 818 LADs per myocyte. Constitutive LADs (cLADs), defined as LADs that were shared by at least three genomes (N = 2572), comprised about a third of the mouse cardiac myocyte genomes. Transcript levels of the protein-coding genes located at the cLADs (N = 3975) were ∼16-fold lower than those at the non-LAD regions (N = ∼17 778). The prevalence of DSBs was higher in the non-LAD as compared to the cLAD regions. Likewise, DSBs were more common in the loss-of-LAD regions, defined as the genomic regions in the Myh6-Cre:LmnaF/F that were juxtaposed to the LAD regions in the wild-type myocytes.
Conclusion: To our knowledge, this is the first identification of the DSBs, at the nucleotide resolution in the cardiovascular system. The prevalence of DSBs was higher in the genomic regions associated with transcription. Because transcription is pervasive, DSBs are expected to be common and pathogenic in various states and aging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/cvr/cvae063 | DOI Listing |
Genetics
January 2025
Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Bloom Syndrome helicase (Blm) is a RecQ family helicase involved in DNA repair, cell-cycle progression, and development. Pathogenic variants in human BLM cause the autosomal recessive disorder Bloom Syndrome, characterized by predisposition to numerous types of cancer. Prior studies of Drosophila Blm mutants lacking helicase activity or protein have shown sensitivity to DNA damaging agents, defects in repairing DNA double-strand breaks (DSBs), female sterility, and improper segregation of chromosomes in meiosis.
View Article and Find Full Text PDFEMBO Rep
January 2025
Myeloid Therapeutics Inc., Cambridge, MA, 02139, USA.
To address a wide range of genetic diseases, genome editing tools that can achieve targeted delivery of large genes without causing double-strand breaks (DSBs) or requiring DNA templates are necessary. Here, we introduce CRISPR-Enabled Autonomous Transposable Element (CREATE), a genome editing system that combines the programmability and precision of CRISPR/Cas9 with the RNA-mediated gene insertion capabilities of the human LINE-1 (L1) element. CREATE employs a modified L1 mRNA to carry a payload gene, and a Cas9 nickase to facilitate targeted editing by L1-mediated reverse transcription and integration without relying on DSBs or DNA templates.
View Article and Find Full Text PDFCell Death Differ
January 2025
Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
The assembly of Tcrb and Tcra genes require double negative (DN) thymocytes to undergo multiple rounds of programmed DNA double-strand breaks (DSBs), followed by their efficient repair. However, mechanisms governing cell cycle checkpoints and specific survival pathways during the repair process remain unclear. Here, we report high-resolution scRNA-seq analyses of individually sorted mouse DN3 and DN4 thymocytes, which reveals a G2M cell cycle checkpoint, in addition to the known G1 checkpoint, during Tcrb and Tcra recombination.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy.
Increased expression of branched-chain amino acid (BCAA) transaminase 1 (BCAT1) often correlates with tumor aggressiveness and drug resistance in cancer. We have recently reported that BCAT1 was overexpressed in a subgroup of T-cell acute lymphoblastic (T-ALL) samples, especially those with NOTCH1 activating mutations. Interestingly, BCAT1-depleted cells showed pronounced sensitivity to DNA-damaging agents such as etoposide; however, how BCAT1 regulates this sensitivity remains uncertain.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
College of Life Sciences, Hebei University, Baoding 071002, China.
Bovine herpesvirus 1 (BoHV-1) productive infection induces the generation of DNA double-strand breaks (DSBs), which may consequently lead to cell apoptosis. In response to DSBs, the DNA damage repair-related protein 53BP1 is recruited to the sites of DSBs, leading to the formation of 53BP1foci, which are crucial for the repair of damaged DNA and maintaining genomic integrity by repairing DSBs. In this study, we discovered that HMGA1 may play a significant role in counteracting virus infection-induced DNA damage, as the siRNA-mediated knockdown of HMGA1 protein expression or inhibition of HMGA1 activity by the chemical inhibitor Netropsin uniformly exacerbates the DNA damage induced by BoHV-1 productive infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!