Triploid oysters are widely used in off-bottom aquaculture of eastern oysters, . However, farmers of the Gulf of Mexico (GoM) and Atlantic coast estuaries have observed unresolved, late-spring die-offs of triploid oysters, threatening the sustainability of triploid aquaculture. To investigate this, the physiological processes underlying oyster growth (e.g., feeding, respiration) and mortality of one-year-old diploid and triploid oysters were compared in early summer following an uptick in mortality. It was predicted that higher triploid mortality was the result of energetic imbalances (increased metabolic demands and decreased feeding behavior). Oyster clearance rates, percentage of time valves were open, absorption efficiency, oxygen consumption rates (basal and routine), ammonia excretion rate were measured in the laboratory and scope for growth was calculated. In addition, their condition index, gametogenic stage, infection level, and mortality were measured. Mortality of triploids in the laboratory was greater than for diploids, mirroring mortality observed in a related field study. The physiological parameters measured, however, could not explain triploid mortality. Scope for growth, condition index, and clearance rates of triploids were greater than for diploids, suggesting sufficient energy reserves, while all other measurements where similar between the ploidies. It remains to be determined whether mortality could be caused from disruption of energy homeostasis at the cellular level.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10993659 | PMC |
http://dx.doi.org/10.3389/fmars.2023.1194296 | DOI Listing |
Pest Manag Sci
December 2024
Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
Comp Biochem Physiol Part D Genomics Proteomics
December 2024
Shandong Engineering Research Center of Oyster Germplasm Creation and Efficient Culture, Yantai 264025, China; School of Fisheries, Ludong University, Yantai 264025, China. Electronic address:
As an important member of global aquaculture, oysters (Crassostrea gigas) have significant economic value. With the development of commercial aquaculture, the frequent occurrence of diseases caused by Vibrio alginolyticus has become a hindrance to high-density aquaculture. Gill tissue, as an important component of immune system of the oysters, plays the key point in the face of invasion by foreign substances.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China. Electronic address:
Triploid Pacific oyster Crassostrea gigas exhibits notable differences in fecundity, with the majority being sterile individuals, referred to as female β, which produce few oocytes, while a minority are fertile individuals, referred to as female α, which produce abundant oocytes. However, the molecular mechanisms underlying these differences in triploid fecundity remain poorly understood. CDC42 has been implicated in processes related to increased DNA damage and genomic instability.
View Article and Find Full Text PDFTriploid oysters are commonly used as the basis for production in the aquaculture of eastern oysters along the USA East and Gulf of Mexico coasts. While they are valued for their rapid growth, incidents of triploid mortality during summer months have been well documented in eastern oysters, especially at low salinity sites. We compared global transcriptomic responses of diploid and triploid oysters bred from the same three maternal source populations at two different hatcheries and outplanted to a high (annual mean salinity = 19.
View Article and Find Full Text PDFChemosphere
September 2024
Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa; Normandie Université, UNICAEN, Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques, UMR 8067 BOREA (CNRS, MNHN, UPMC, UCBN, IRD-207), CS 14032, 14000, Caen, France.
Recent advances in genetic manipulation such as triploid breeding and artificial selection, have rapidly emerged as valuable hatchery methodologies for enhancing seafood stocks. The Pacific oyster Magallana gigas is a leading aquaculture species worldwide and key ecosystem engineer that has received particular attention in this field of science. In light of the growing recognition of the ecological effects of intraspecific variation, oyster polyploids provide a valuable opportunity to assess whether intraspecific diversity affects physiological responses to environmental stressors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!