The petrochemical industry can reduce its environmental impacts by moving from fossil resources to alternative carbon feedstocks. Biomass and plastic waste-based production pathways have recently been developed for benzene, toluene, and xylene (BTX). This study evaluates the environmental impacts of these novel BTX pathways at a commercial and future (2050) scale, combining traditional life cycle assessment with absolute environmental sustainability assessment using the planetary boundary concept. We show that plastic waste-based BTX has lower environmental impacts than fossil BTX, including a 12% decrease in greenhouse gas (GHG) emissions. Biomass-based BTX shows greater GHG emission reductions (42%), but it causes increased freshwater consumption and eutrophication. Toward 2050, GHG emission reductions become 75 and 107% for plastic waste and biobased production, respectively, compared to current fossil-BTX production. When comparing alternative uses of plastic waste, BTX production has larger climate benefits than waste incineration with energy recovery with a GHG benefit of 1.1 kg CO-equiv/kg plastic waste. For biomass (glycerol)-based BTX production, other uses of glycerol are favorable over BTX production. While alternative BTX production pathways can decrease environmental impacts, they still transgress multiple planetary boundaries. Further impact reduction efforts are thus required, such as using other types of (waste) biomass, increasing carbon recycling, and abatement of end-of-life emissions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10988839 | PMC |
http://dx.doi.org/10.1021/acssuschemeng.3c06996 | DOI Listing |
Microb Genom
January 2025
GMT Science 75 route de Lyons-La-Foret, Rouen F-76000, France.
Microbiome profiling tools rely on reference catalogues, which significantly affect their performance. Comparing them is, however, challenging, mainly due to differences in their native catalogues. In this study, we present a novel standardized benchmarking framework that makes such comparisons more accurate.
View Article and Find Full Text PDFJMIR Public Health Surveill
January 2025
Faculty of Human-Environment Studies, Kyushu University, Fukuoka, Japan.
Background: The effects of physical activity (PA) across different domains and intensities on depressive symptoms remain inconclusive. Incorporating the community-built environment (CBE) into longitudinal analyses of PA's impact on depressive symptoms is crucial.
Objective: This study aims to examine the effects of PA at different intensities-low-intensity PA (eg, walking activities) and moderate-to-vigorous-intensity PA (eg, activities requiring substantial effort and causing faster breathing or shortness of breath)-across leisure-time and occupational domains on depressive symptom trajectories among middle-aged and older adults.
Integr Environ Assess Manag
January 2025
Department of Medicine, Division of Occupational, Environmental and Climate Medicine, University of California, San Francisco; San Francisco, California, 94158United States.
Water scarcity is projected to affect half of the world's population, gradually exacerbated by climate change. This article elaborates from a panel discussion at the 2023 United Nations Water Conference on Addressing Water Scarcity to Achieve Climate Resilience and Human Health. Understanding and addressing water scarcity goes beyond hydrological water balances to also include societal and economic measures.
View Article and Find Full Text PDFTree Physiol
January 2025
Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
Tree bark is a crucial tissue that defends tree stems from invasions by microorganisms. However, our understanding of the constitutive chemical defense mechanisms of the tree barks remains limited. Our group recently discovered that the inner bark of Sorbus commixta exhibited potent inhibitory effects on the growth of the white-rot fungus, Trametes versicolor.
View Article and Find Full Text PDFJAMA Intern Med
January 2025
Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston.
Importance: The optimal configuration of a smoking cessation intervention in a lung cancer screening (LCS) setting has not yet been established.
Objective: To evaluate the efficacy of 3 tobacco treatment strategies of increasing integration and intensity in the LCS setting.
Design, Setting, And Participants: In this randomized clinical trial, LCS-eligible current smokers were randomized into 3 treatments: quitline (QL), QL plus (QL+), or integrated care (IC).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!