Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Colorectal cancer (CRC) represents a molecularly heterogeneous disease and one of the most frequent causes of cancer-related death worldwide. The traditional classification of CRC is based on pathomorphological and molecular characteristics of tumor cells (mucinous, ring-cell carcinomas, ), analysis of mechanisms of carcinogenesis involved (chromosomal instability, microsatellite instability, CpG island methylator phenotype) and mutational statuses of commonly altered genes (KRAS, NRAS, BRAF, APC, ), as well as expression signatures (CMS 1-4). It is also suggested that the tumor microenvironment is a key player in tumor progression and metastasis in CRC. According to the latest data, the immune microenvironment can also be predictive of the response to immune checkpoint inhibitors. In this review, we highlight how the immune environment influences CRC prognosis and sensitivity to systemic therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10989368 | PMC |
http://dx.doi.org/10.4251/wjgo.v16.i3.643 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!