Solvent selective gelation of cetyltrimethylammonium bromide: structure, phase evolution and thermal characteristics.

R Soc Open Sci

Department of Chemistry, School of Advanced Sciences, VIT-AP University, Amaravati, Andhra Pradesh 522 241, India.

Published: April 2024

We report herein the gelation behaviour of cetyltrimethylammonium bromide (CTAB), a cationic surfactant, in a variety of solvent compositions. A turbid gel of CTAB in a binary solvent mixture at a critical composition was observed to be 1 : 3 v/v toluene : water. The molecular structure of the as-formed gel was investigated by X-ray diffraction and microscopic techniques, namely, optical and polarizing microscopy, scanning electron microscopy and small-angle X-ray scattering (SAXS). The phase evolution has been studied using UV-visible transmittance measurements and the thermal characteristics of the gel by differential scanning calorimetry measurements. SAXS studies, in conjunction with molecular modelling, revealed the gel to assemble as lamellae with high interdigitation of bilayer assembly of CTAB molecules with predominant non-covalent interactions, where the gel lamellae were inferred from the interplanar spacings. Rheological studies revealed the viscoelastic nature of the CTAB gels. The ability to form a gel has been evaluated in several polar solvents, such as methanol and chloroform, and non-polar solvents, such as toluene and carbon tetrachloride.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10987984PMC
http://dx.doi.org/10.1098/rsos.231487DOI Listing

Publication Analysis

Top Keywords

cetyltrimethylammonium bromide
8
phase evolution
8
thermal characteristics
8
gel
6
solvent selective
4
selective gelation
4
gelation cetyltrimethylammonium
4
bromide structure
4
structure phase
4
evolution thermal
4

Similar Publications

Elucidating the physicochemical interactions between fibrinogen and surfactant mixtures: Implications for pharmaceutical sciences.

Int J Biol Macromol

January 2025

Soft Matter and Molecular Biophysics Group, Department of Applied Physics and Institute of Materials (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.

This study investigates the physicochemical interactions between fibrinogen (Fib), a key glycoprotein in blood clotting, and a mixture of two biologically active compounds: dicloxacillin (Diclox), an antibiotic; and cetyltrimethylammonium bromide (CTAB), a cationic surfactant. Understanding these interactions is crucial for enhancing drug delivery systems and optimizing pharmaceutical formulations. Molecular docking simulations and various spectroscopic techniques, including UV-Vis, fluorescence, and circular dichroism, were employed to explore how this mixture affects the structural and functional properties of fibrinogen.

View Article and Find Full Text PDF

Influence of goethite on the fate of antibiotic (tetracycline) in the aqueous environment: Effect of cationic and anionic surfactants.

Sci Total Environ

January 2025

Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India; Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India. Electronic address:

Over the last decades, the release and occurrence of organic pollutants in aquatic systems have become a major global concern due to their bioaccumulation, toxicity, and adverse effects on the ecosystem. Tetracycline (TC), a widely used antibiotic, is often found at high concentrations in the aqueous environment and tends to bind with the natural colloids. Post-COVID-19 pandemic, the release of surfactants in the environment has increased due to the excessive use of washing and cleaning products.

View Article and Find Full Text PDF

Polydopamine/Melamine Sponge-Derived Compressible Carbon Foam for High-Performance Supercapacitors.

Langmuir

January 2025

Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, China.

Electrode materials with a deformation capability are vital to the development of flexible supercapacitors. However, the preparation of porous carbons with a deformability remains challenging. Herein, a compressible carbon foam has been successfully prepared using a polydopamine/melamine sponge (PDA/MS) as the precursor material.

View Article and Find Full Text PDF

Constructing Activatable Photosensitizers Using Covalently Modified Mesoporous Silica.

Adv Sci (Weinh)

January 2025

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China.

The combination of photosensitizers (PSs) and nanomaterials is a widely used strategy to enhance PS efficacy and broaden their applicability. However, the current nanocarrier-based delivery strategies focus on conventional PSs, neglecting the critical issue of PS phototoxicity. In this study, DHUOCl-25, an activatable PS (aPS) activated by hypochlorous acid, is synthesized by combining a silicon source structure and an activation unit.

View Article and Find Full Text PDF
Article Synopsis
  • The study highlights the rising importance of assessing the cytotoxicity of gold nanoparticles (GNPs) in biomedical applications.
  • Researchers synthesized three types of GNPs—gold nanorods (GNRs), gold nanobipyramids (GNBPs), and gold nanocups (GNCs)—using a specific method and measured their sizes.
  • The experiments showed that the cytotoxic effects of GNPs varied based on their shape and surface coating, with CTAB-coated GNPs being more harmful than PEG-coated ones, indicating that these factors significantly influence GNP behavior in cells.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!