Neuroprotective therapeutic potential for restoring dysregulated microRNA (miRNA) expression has previously been demonstrated in a gerbil cerebral infarction model. However, since temporal changes in miRNA expression profiles following stroke onset are unknown, miRNAs proving to be useful therapeutic targets have yet to be identified. We evaluated cognitive function, hippocampal neuronal cell death, and microarray-based miRNA expression profiles at 5, 9, 18, 36, and 72 h after 5-min whole brain ischemia in gerbils. A decline in cognitive function occurred in parallel with increased neuronal cell death 36-72 h after ischemia. The Jonckheere-Terpstra test was used to analyze miRNA expression trends 5-72 h after ischemia. The expression levels of 63 miRNAs were significantly upregulated, whereas 32 miRNAs were significantly downregulated, monotonically. Of the 32 monotonically downregulated miRNAs, 18 showed the largest decrease in expression 5-9 h after ischemia. A subset of these dysregulated miRNAs (miR-378a-5p, miR-204-5p, miR-34c-5p, miR-211-5p, miR-34b-3p, and miR-199b-3p) could be associated with brain ischemia and neuropsychiatric disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10990972PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e28875DOI Listing

Publication Analysis

Top Keywords

mirna expression
16
expression profiles
12
brain ischemia
12
cognitive function
8
neuronal cell
8
cell death
8
ischemia
6
expression
6
mirnas
5
temporal expression
4

Similar Publications

Introduction: Colorectal cancer (CRC) is the second most common cause of cancer-related deaths globally. The gut microbiota, along with adenomatous polyps (AP), has emerged as a plausible contributor to CRC progression. This study aimed to scrutinize the impact of the FadA antigen derived from Fusobacterium nucleatum on the expression levels of the ANXA2 ceRNA network and assess its relevance to CRC advancement.

View Article and Find Full Text PDF

Alopecia areata (AA) is an autoimmune condition marked by hair loss, linked to inflammatory processes involving the interleukin-1 receptor type 1 (IL-1R1) pathway. This study aims to explore the relationship between IL-1R1 gene expression, serum IL-1R1 levels, and hsa-miR-19b-3p in relation to AA severity. Using a case-control design, we assessed 100 AA patients and 100 healthy controls, measuring serum IL-1R1 through enzyme-linked immunosorbent assay (ELISA) and analyzing IL-1R1 gene and hsa-miR-19b-3p expression levels via quantitative real-time PCR (qRT-PCR).

View Article and Find Full Text PDF

The neurobiological mechanisms driving the ictal-interictal fluctuations and the chronification of migraine remain elusive. We aimed to construct a composite genetic-microRNA model that could reflect the dynamic perturbations of the disease course and inform the pathogenesis of migraine. We prospectively recruited four groups of participants, including interictal episodic migraine (i.

View Article and Find Full Text PDF

Background/aims: Bruise is the extravasation of blood that may be mild or severe. Bone marrow mesenchymal stem cells (BM-MSCs) are one of the most promising cells used in regenerative medicine for treating many disorders. We aimed to evaluate the efficiency of BM-MSCs in treating cutaneous bruises.

View Article and Find Full Text PDF

Microgravity-induced cardiac remodeling and dysfunction present significant challenges to long-term spaceflight, highlighting the urgent need to elucidate the underlying molecular mechanisms and develop precise countermeasures. Previous studies have outlined the important role of miRNAs in cardiovascular disease progression, with miR-199a-3p playing a crucial role in myocardial injury repair and the maintenance of cardiac function. However, the specific role and expression pattern of miR-199a-3p in microgravity-induced cardiac remodeling remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!