A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of Company-Specific Emission Factors with Confidence Intervals for Natural Gas Customer Meters in Southern California. | LitMetric

Methane is both a significant and short-lived greenhouse gas compared to CO, and reducing methane emissions from natural gas distribution systems may offer cost-effective reduction opportunities. We report substantial new direct leak rate measurements from customer meter set assemblies (MSAs) in Southern California. In a novel way, emission factors are defined in terms of aboveground Hazardous and Nonhazardous leak categories, which take direct advantage of readily available industry leak data. We also studied leaks that were not detected as part of normal leak survey procedures. As a result, this yields company-specific emission factors that can be used to track progress in reducing methane emissions. This approach also has the advantage of explicitly accounting for the skewed or fat-tail distribution of leak rates by treating high flow rate MSA leaks separately from low flow rate MSA leaks. The Southern California Gas (SoCalGas) methane emission factors, based on 485 leak rate measurements by direct enclosure, were 4.55 (95% confidence interval: 2.32 to 7.14) kg/day for Hazardous leaks, 0.149 (0.119 to 0.183) kg/day for Nonhazardous leaks, and 0.0039 (0.0003 to 0.0198) kg/day for Non-Detected leaks. The percentage of surveyed meters with nondetected leaks was 29.1% (24.3 to 34.6%). Based on a robust Monte Carlo analysis, total leak emissions from MSAs for the SoCalGas system were reduced by 35% based on data from 2015 to 2022. These reductions were attributed to surveying a larger number of MSAs and accelerated leak repair rates. In traditional population-based emission inventories, an individual emission factor for a given asset category is multiplied by the total population of MSAs within the category. This approach simply cannot capture the reduction in leak numbers and methane emissions resulting from leak mitigation and prevention programs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.3c10316DOI Listing

Publication Analysis

Top Keywords

emission factors
16
southern california
12
methane emissions
12
leak
10
company-specific emission
8
natural gas
8
reducing methane
8
leak rate
8
rate measurements
8
flow rate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!