Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Polymorphism-dependent cytotoxicity and cellular uptake of drug molecules have been studied for the past two decades. However, the visualization of polymorph-dependent cellular uptake and cytotoxicity using microscopy imaging techniques has not yet been reported. The luminescent polymorph is an ideal candidate to validate the above hypothesis. Herein, we report the polymorph-dependent cellular uptake, cytotoxicity, and bio-imaging functions of polymorphs 1Y and 1R of a naphthalimide-phenothiazine dyad. These polymorphs show different luminescence colors in the solid state and exhibit aggregation-induced enhanced emission (AIEE) in the DMSO-Water mixture. Bioimaging, cytotoxicity assay, and fluorescence-activated cell sorting (FACS) studies revealed that these polymorphs show different levels of cytotoxicity, cellular uptake, localization, and imaging potential. Detailed photophysical, morphological, and biological studies revealed that the difference in molecular conformation in these polymorphs enables them to form aggregates of different sizes and morphology, which leads to the differential uptake of these into the cells and consequently shows different cytotoxicity and imaging potentials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202400868 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!