Histone variant H2A.Z is required for plant salt response by regulating gene transcription.

Plant Cell Environ

Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China.

Published: July 2024

As a well-conserved histone variant, H2A.Z epigenetically regulates plant growth and development as well as the interaction with environmental factors. However, the role of H2A.Z in response to salt stress remains unclear, and whether nucleosomal H2A.Z occupancy work on the gene responsiveness upon salinity is obscure. Here, we elucidate the involvement of H2A.Z in salt response by analysing H2A.Z disorder plants with impaired or overloaded H2A.Z deposition. The salt tolerance is dramatically accompanied by H2A.Z deficiency and reacquired in H2A.Z OE lines. H2A.Z disorder changes the expression profiles of large-scale of salt responsive genes, announcing that H2A.Z is required for plant salt response. Genome-wide H2A.Z mapping shows that H2A.Z level is induced by salt condition across promoter, transcriptional start site (TSS) and transcription ending sites (-1 kb to +1 kb), the peaks preferentially enrich at promoter regions near TSS. We further show that H2A.Z deposition within TSS provides a direct role on transcriptional control, which has both repressive and activating effects, while it is found generally H2A.Z enrichment negatively correlate with gene expression level response to salt stress. This study shed light on the H2A.Z function in salt tolerance, highlighting the complex regulatory mechanisms of H2A.Z on transcriptional activity for yielding appropriate responses to particularly environmental stress.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.14908DOI Listing

Publication Analysis

Top Keywords

h2az
17
salt response
12
salt
9
histone variant
8
variant h2az
8
h2az required
8
required plant
8
plant salt
8
response salt
8
salt stress
8

Similar Publications

RNA Polymerase II coordinates histone deacetylation at active promoters.

bioRxiv

September 2024

Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health; Research Triangle Park, 27709, NC, USA.

Nucleosomes at actively transcribed promoters have specific histone post-transcriptional modifications and histone variants. These features are thought to contribute to the formation and maintenance of a permissive chromatin environment. Recent reports have drawn conflicting conclusions about whether these histone modifications depend on transcription.

View Article and Find Full Text PDF

Understanding the role of BRD8 in human carcinogenesis.

Cancer Sci

September 2024

Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.

The bromodomain is a conserved protein-protein interaction module that functions exclusively to recognize acetylated lysine residues on histones and other proteins. It is noteworthy that bromodomain-containing proteins are involved in transcriptional modulation by recruiting various transcription factors and/or protein complexes such as ATP-dependent chromatin remodelers and acetyltransferases. Bromodomain-containing protein 8 (BRD8), a molecule initially recognized as skeletal muscle abundant protein and thyroid hormone receptor coactivating protein of 120 kDa (TrCP120), was shown to be a subunit of the NuA4/TIP60-histone acetyltransferase complex.

View Article and Find Full Text PDF

Background: This study aimed to explore the expression level and transcriptional regulation mechanism of Extra Spindle Pole Bodies Like 1 (ESPL1) in bladder cancer (BC).

Methods: A multicentre database of samples (n = 1391) was assayed for ESPL1 mRNA expression in BC and validated at the protein level by immunohistochemical (IHC) staining of in-house samples (n = 202). Single-cell sequencing (scRNA-seq) analysis and enrichment analysis explored ESPL1 distribution and their accompanying molecular mechanisms.

View Article and Find Full Text PDF

Epitranscriptomic RNA modifications are crucial for the maintenance of glioma stem cells (GSCs), the most malignant cells in glioblastoma (GBM). 3-methylcytosine (mC) is a new epitranscriptomic mark on RNAs and METTL8 represents an mC writer that is dysregulated in cancer. Although METTL8 has an established function in mitochondrial tRNA (mt-tRNA) mC modification, alternative splicing of METTL8 can also generate isoforms that localize to the nucleolus where they may regulate R-loop formation.

View Article and Find Full Text PDF

Ubiquitination of histone H2A at lysine 119 residue (H2AK119ub) plays critical roles in a wide range of physiological processes, including Polycomb gene silencing , replication , DNA damage repair , inactivation , and heterochromatin organization . However, the underlying mechanism and structural basis of H2AK119ub remains largely elusive. In this study, we report that H2AK119ub nucleosomes have a unique composition, containing histone variants H2BC1 and H2AZ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!