When WBC264-9C cells are preincubated with pertussis toxin, chemotaxis is inhibited and ADP-ribosylation of a membrane protein with a subunit Mr 41,000 is observed. Both the inhibition of chemotaxis and the ADP-ribosylation by pertussis toxin display a similar time lag, temperature dependence, and pertussis toxin-concentration dependence. Although the inhibition of chemotaxis and the ADP-ribosylation of the membrane protein are qualitatively correlated, nearly complete inhibition of chemotaxis occurs when there is only partial ADP-ribosylation of the membrane protein. Pertussis toxin-catalyzed ADP-ribosylation of the Mr 41,000 protein in WBC264-9C membranes is stimulated by GDP, GTP, and to a lesser extent by GMP; the nonhydrolyzable GTP analog guanosine 5'-[beta, gamma-imido]triphosphate has no effect. WBC264-9C membranes have a high-affinity GTPase activity, which is partially inhibited in membranes from pertussis toxin-treated cells. Neither GTPase activity nor adenylate cyclase activity in membranes from WBC264-9C cells is affected by fMet-Leu-Phe, an attractant for these cells. Our results suggest that a guanine nucleotide binding protein may be involved in chemotaxis, but they do not indicate an involvement of adenylate cyclase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC397619PMC
http://dx.doi.org/10.1073/pnas.82.9.2637DOI Listing

Publication Analysis

Top Keywords

inhibition chemotaxis
16
adp-ribosylation membrane
16
membrane protein
16
pertussis toxin
12
chemotaxis adp-ribosylation
12
wbc264-9c cells
8
wbc264-9c membranes
8
gtpase activity
8
adenylate cyclase
8
pertussis
6

Similar Publications

Cardiovascular diseases (CVDs) include atherosclerosis, which is an inflammatory disease of large and medium vessels that leads to atherosclerotic plaque formation. The key factors contributing to the onset and progression of atherosclerosis include the pro-inflammatory cytokines interferon (IFN)α and IFNγ and the pattern recognition receptor (PRR) Toll-like receptor 4 (TLR4). Together, they trigger the activation of IFN regulatory factors (IRFs) and signal transducer and activator of transcription (STAT)s.

View Article and Find Full Text PDF

Polarity and migration of cranial and cardiac neural crest cells: underlying molecular mechanisms and disease implications.

Front Cell Dev Biol

January 2025

Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.

The Neural Crest cells are multipotent progenitor cells formed at the neural plate border that differentiate and give rise to a wide range of cell types and organs. Directional migration of NC cells and their correct positioning at target sites are essential during embryonic development, and defects in these processes results in congenital diseases. The NC migration begins with the epithelial-mesenchymal transition and extracellular matrix remodeling.

View Article and Find Full Text PDF

Dual effect of targeting LSD1 on the invasiveness and the mechanical response of acute lymphoblastic leukemia cells.

Biomed Pharmacother

January 2025

Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain. Electronic address:

Epigenetic alterations are hallmarks of cancer, with histone modifiers playing critical roles in gene transcription, DNA homeostasis, and other nuclear functions. Lysine-specific demethylase 1 (LSD1), a key regulator of H3K4 methylation, has emerged as a promising pharmacological target in cancer treatment, including leukemia. Acute lymphoblastic leukemia (ALL), the most common pediatric cancer, remains a significant therapeutic challenge due to limited understanding of how epigenetic therapy impacts leukemia dissemination.

View Article and Find Full Text PDF

Plant growth-promoting rhizobacterium Sp7 utilizes fructose efficiently via a fructose phosphotransferase system (Fru-PTS). Its genome encodes two putative Fru-PTS, each consisting of FruB (EIIA), FruK (Pfk), and FruA (EIIBC) proteins. We compared the proteomes of Sp7 grown with malate or fructose as sole carbon source, and noticed upregulation of the constituent proteins of Fru-PTS1 only on fructose.

View Article and Find Full Text PDF

Microglial NLRP3-gasdermin D activation impairs blood-brain barrier integrity through interleukin-1β-independent neutrophil chemotaxis upon peripheral inflammation in mice.

Nat Commun

January 2025

Department of Microbiology and Immunology, Brain Korea 21 Project for Medical Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea.

Blood-brain barrier (BBB) disintegration is a key contributor to neuroinflammation; however, the biological processes governing BBB permeability under physiological conditions remain unclear. Here, we investigate the role of NLRP3 inflammasome in BBB disruption following peripheral inflammatory challenges. Repeated intraperitoneal lipopolysaccharide administration causes NLRP3-dependent BBB permeabilization and myeloid cell infiltration into the brain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!