How to deal with large tibial bone defects is still controversial. The purpose of this research was to compare the semi-focal bone transport (SFBT) technique with traditional bone transport (TBT) technique for treating such patients. Sixty-two patients were included and retrospectively analyzed. In all cases, after radical debridement large tibial bone defects remained. Patients were treated by the SFBT or TBT technique. The distraction, consolidation duration and complications were recorded by the patients' medical files. Based on the Association for the Study and Application of Methods of Ilizarov (ASAMI) standard, the bone and functional results were evaluated. The mean bone defect size was 7.7 ± 1.6 cm and 7.5 ± 2.1 cm for SFBT and TBT patients. The mean external fixation index (EFI) was 1.51 ± 0.14 months/cm and 1.89 ± 0.25 months/cm for SFBT and TBT patients (p < 0.05), respectively. With respect to bone and function results, there was no significant differences between the two groups (p > 0.05). The mean number of complications per patient was 1.1 ± 0.6 and 1.6 ± 0.7 for SFBT and TBT patients (p < 0.05). Compared to the traditional bone transport technique, patients using the semi-focal bone transport technique achieved better clinical effects, including shorter EFI and less complications. Therefore, the SFBT technique could be a new option for patients with large tibial bone defects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10994901 | PMC |
http://dx.doi.org/10.1038/s41598-024-58548-z | DOI Listing |
FEBS J
January 2025
Department of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany.
Creatine is essential for ATP regeneration in energy-demanding cells. Creatine deficiency results in severe neurodevelopmental impairments. In the brain, creatine is synthesized locally by oligodendrocytes to supply neighboring neurons.
View Article and Find Full Text PDFJ Biomech Eng
January 2025
Department of Mechanical Engineering Marshall University, Huntington, WV 25755, USA; Department of Biomedical Engineering Marshall University, Huntington, WV 25755, USA.
Cell-laden, scaffold-based tissue engineering methods have been successfully utilized for the treatment of bone fractures. In such methods, the rate of scaffold biodegradation, transport of nutrients, and removal of cell metabolic wastes are critical fluid-dynamics factors, affecting tissue regeneration. Therefore, there is a critical need to identify the underlying material transport mechanisms associated with stem cell-driven, scaffold-based bone tissue regeneration.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
January 2025
IMAGINE Institute Affiliate, INSERM U1163, Paris, France.
Context: Congenital hypothyroidism (CH) is the most common neonatal endocrine disorder and is chiefly caused by thyroid dysgenesis (CHTD). The inheritance mode of the disease remains complex.
Objectives: Gain insight into the inheritance mode of CHTD.
Ren Fail
December 2025
Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
Macrophages play a vital role in the inflammation and repair processes of ischemia/reperfusion-induced acute kidney injury (IR-AKI). The mechanosensitive ion channel Piezo1 is significant in these inflammatory processes. However, the exact role of macrophage in IR-AKI is unknown.
View Article and Find Full Text PDFFood Res Int
January 2025
College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China. Electronic address:
Calcium deficiency has garnered significant attention as a global public health issue. A new generation of calcium supplements, peptide-calcium chelates, is expected to increase in market value. In this study, we produced MORP (MW < 1 kDa) from Moringa oleifera leaf protein via enzymatic hydrolysis for chelation with Ca to produce MORP-Ca.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!