Diagnostic errors are associated with patient harm and suboptimal outcomes. Despite national scientific efforts to advance definition, measurement and interventions for diagnostic error, diagnosis in mental health is not well represented in this ongoing work. We aimed to summarise the current state of research on diagnostic errors in mental health and identify opportunities to align future research with the emerging science of diagnostic safety. We review conceptual considerations for defining and measuring diagnostic error, the application of these concepts to mental health settings, and the methods and subject matter focus of recent studies of diagnostic error in mental health. We found that diagnostic error is well understood to be a problem in mental healthcare. Although few studies used clear definitions or frameworks for understanding diagnostic error in mental health, several studies of missed, wrong, delayed and disparate diagnosis of common mental disorders have identified various avenues for future research and development. Nevertheless, a lack of clear consensus on how to conceptualise, define and measure errors in diagnosis will pose a barrier to advancement. Further research should focus on identifying preventable missed opportunities in the diagnosis of mental disorders, which may uncover generalisable opportunities for improvement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503128PMC
http://dx.doi.org/10.1136/bmjqs-2023-016996DOI Listing

Publication Analysis

Top Keywords

diagnostic error
24
mental health
24
error mental
12
diagnostic
9
mental
9
diagnostic errors
8
diagnosis mental
8
mental disorders
8
health
6
error
5

Similar Publications

Lung ultrasound is a growing modality in clinics for diagnosing and monitoring acute and chronic lung diseases due to its low cost and accessibility. Lung ultrasound works by emitting diagnostic pulses, receiving pressure waves and converting them into radio frequency (RF) data, which are then processed into B-mode images with beamformers for radiologists to interpret. However, unlike conventional ultrasound for soft tissue anatomical imaging, lung ultrasound interpretation is complicated by complex reverberations from the pleural interface caused by the inability of ultrasound to penetrate air.

View Article and Find Full Text PDF

Stroke mimics and chameleons remain a major challenge to the clinician and clinical investigator. Misdiagnosis of stroke can result in significant harm to our patients, as well as unnecessary financial costs to the health care systems internationally. The approach to stroke mimics and chameleons has evolved over time with the development of clinical scales and technology.

View Article and Find Full Text PDF

Background: Visual assessment of coronary CT angiography (CCTA) is time-consuming, influenced by reader experience and prone to interobserver variability. This study evaluated a novel algorithm for coronary stenosis quantification (atherosclerosis imaging quantitative CT, AI-QCT).

Methods: The study included 208 patients with suspected coronary artery disease (CAD) undergoing CCTA in Perfusion Imaging and CT Coronary Angiography With Invasive Coronary Angiography-1.

View Article and Find Full Text PDF

Purpose: The study aimed to develop a deep learning model for rapid, automated measurement of full-spine X-rays in adolescents with Adolescent Idiopathic Scoliosis (AIS). A significant challenge in this field is the time-consuming nature of manual measurements and the inter-individual variability in these measurements. To address these challenges, we utilized RTMpose deep learning technology to automate the process.

View Article and Find Full Text PDF

This paper introduces a novel method for spleen segmentation in ultrasound images, using a two-phase training approach. In the first phase, the SegFormerB0 network is trained to provide an initial segmentation. In the second phase, the network is further refined using the Pix2Pix structure, which enhances attention to details and corrects any erroneous or additional segments in the output.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!