A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development and validation of a machine learning model for prediction of type 2 diabetes in patients with mental illness. | LitMetric

Background: Type 2 diabetes (T2D) is approximately twice as common among individuals with mental illness compared with the background population, but may be prevented by early intervention on lifestyle, diet, or pharmacologically. Such prevention relies on identification of those at elevated risk (prediction). The aim of this study was to develop and validate a machine learning model for prediction of T2D among patients with mental illness.

Methods: The study was based on routine clinical data from electronic health records from the psychiatric services of the Central Denmark Region. A total of 74,880 patients with 1.59 million psychiatric service contacts were included in the analyses. We created 1343 potential predictors from 51 source variables, covering patient-level information on demographics, diagnoses, pharmacological treatment, and laboratory results. T2D was operationalised as HbA1c ≥48 mmol/mol, fasting plasma glucose ≥7.0 mmol/mol, oral glucose tolerance test ≥11.1 mmol/mol or random plasma glucose ≥11.1 mmol/mol. Two machine learning models (XGBoost and regularised logistic regression) were trained to predict T2D based on 85% of the included contacts. The predictive performance of the best performing model was tested on the remaining 15% of the contacts.

Results: The XGBoost model detected patients at high risk 2.7 years before T2D, achieving an area under the receiver operating characteristic curve of 0.84. Of the 996 patients developing T2D in the test set, the model issued at least one positive prediction for 305 (31%).

Conclusion: A machine learning model can accurately predict development of T2D among patients with mental illness based on routine clinical data from electronic health records. A decision support system based on such a model may inform measures to prevent development of T2D in this high-risk population.

Download full-text PDF

Source
http://dx.doi.org/10.1111/acps.13687DOI Listing

Publication Analysis

Top Keywords

machine learning
16
learning model
12
patients mental
12
mental illness
12
model prediction
8
type diabetes
8
t2d
8
t2d patients
8
based routine
8
routine clinical
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!