Rice cytoplasmic male sterility (CMS) provides an exceptional model for studying genetic interaction within plant nuclei given its inheritable trait of non-functional male gametophyte. Gaining a comprehensive understanding of the genes and pathways associated with the CMS mechanism is imperative for improving the vigor of hybrid rice agronomically, such as its productivity. Here, we observed a significant decrease in the expression of a gene named OsRab7 in the anther of the CMS line (SJA) compared to the maintainer line (SJB). OsRab7 is responsible for vesicle trafficking and loss function of OsRab7 significantly reduced pollen fertility and setting rate relative to the wild type. Meanwhile, over-expression of OsRab7 enhanced pollen fertility in the SJA line while a decrease in its expression in the SJB line led to the reduced pollen fertility. Premature tapetum and abnormal development of microspores were observed in the rab7 mutant. The expression of critical genes involved in tapetum development (OsMYB103, OsPTC1, OsEAT1 and OsAP25) and pollen development (OsMSP1, OsDTM1 and OsC4) decreased significantly in the anther of rab7 mutant. Reduced activities of the pDR5::GUS marker in the young panicle and anther of the rab7 mutant were also observed. Furthermore, the mRNA levels of genes involved in auxin biosynthesis (YUCCAs), auxin transport (PINs), auxin response factors (ARFs), and members of the IAA family (IAAs) were all downregulated in the rab7 mutant, indicating its impact on auxin signaling and distribution. In summary, these findings underscore the importance of OsRab7 in rice pollen development and its potential link to cytoplasmic male sterility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2024.148423 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!