Background: Autoantibodies are a hallmark feature of Connective Tissue Diseases (CTD). Their presence in patients with idiopathic interstitial lung disease (ILD) may suggest covert CTD. We aimed to determine the prevalence of CTD autoantibodies in patients diagnosed with idiopathic ILD.
Methods: 499 patient sera were analysed: 251 idiopathic pulmonary fibrosis (IPF), 206 idiopathic non-specific interstitial pneumonia (iNSIP) and 42 cryptogenic organising pneumonia (COP). Autoantibody status was determined by immunoprecipitation.
Results: 2.4% of IPF sera had a CTD-autoantibody compared to 10.2% of iNSIP and 7.3% of COP. 45% of autoantibodies were anti-synthetases. A novel autoantibody targeting an unknown 56 kDa protein was found in seven IPF patients (2.8%) and two NSIP (1%) patients. This was characterised as anti-annexin A11.
Conclusion: Specific guidance on autoantibody testing and interpretation in patients with ILD could improve diagnostic accuracy. Further work is required to determine the clinical significance of anti-annexin A11.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clim.2024.110201 | DOI Listing |
Rheumatology (Oxford)
January 2025
The Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Objective: To explore the clinical characteristics and risk factors for adverse outcomes in patients with Sjögren's Syndrome-associated pulmonary arterial hypertension (SS-PAH).
Methods: A retrospective analysis was conducted on SS-PAH patients diagnosed by right heart catheterization (RHC) between March 2013 and March 2024 across four Chinese medical centers. Patients were categorized into primary SS-PAH (pSS-PAH) and overlap SS-PAH, based on the presence of additional autoimmune diseases.
Cells
January 2025
Division of Nephrology & Hypertension, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA.
Metabolic syndrome (MetS) is associated with low-grade inflammation, which can be exacerbated by renal artery stenosis (RAS) and renovascular hypertension, potentially worsening outcomes through pro-inflammatory cytokines. This study investigated whether mesenchymal stem/stromal cells (MSCs) could reduce fat inflammation in pigs with MetS and RAS. Twenty-four pigs were divided into Lean (control), MetS, MetS + RAS, and MetS + RAS + MSCs.
View Article and Find Full Text PDFCells
December 2024
Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy.
Zebrafish () have emerged as a valuable model organism for investigating musculoskeletal development and the pathophysiology of associated diseases. Key genes and biological processes in zebrafish that closely mirror those in humans, rapid development, and transparent embryos make zebrafish ideal for the in vivo studies of bone and muscle formation, as well as the molecular mechanisms underlying musculoskeletal disorders. This review focuses on the utility of zebrafish in modeling various musculoskeletal conditions, with an emphasis on bone diseases such as osteoporosis and osteogenesis imperfecta, as well as muscle disorders like Duchenne muscular dystrophy.
View Article and Find Full Text PDFInt J Rheum Dis
January 2025
Systemic Autoimmune Diseases Unit, Department of Medicine IV, Fernando Fonseca Hospital, Amadora, Portugal.
Int J Rheum Dis
January 2025
Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Background: Right ventricular (RV) failure is a well-recognized pivotal prognostic factor of adverse outcomes in pulmonary artery hypertension (PAH), while RV dilation provides significant implications for adaptive or maladaptive changes. PAH is a predominant cause of mortality among patients with connective tissue disease (CTD). This study aims to elucidate the prognostic significance of RV morphology, as assessed by echocardiography (ECHO), in with CTD associated with PAH (CTD-PAH).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!