The ongoing energy transition from conventional fuels to renewable energy sources (RES) has given nations the potential to achieve levels of energy self-sufficiency previously thought unattainable. RES in the form of utility-scale solar and wind energy are currently the leading alternatives to fossil-fuel generation. Precise location siting that factors in efficiency limitations related to current and future climate variables is essential for enabling the green energy transition envisioned for 2050. In this context, understanding and mapping the intermittency of RES provides insights to energy system operators for their seamless integration into the grid. The Eastern Mediterranean and Middle East (EMME) region has the potential to harness vast amounts of RES. The scarcity of observations from weather station networks and the lack of private sector incentives for transitioning to RES mean that relevant, supporting weather and climate studies have been limited. This study employs the Weather Research and Forecasting model with Chemistry (WRF-CHEM) to estimate the RES technical potential of EMME countries and map the hourly generation profiles per source and country, simulated for the reference year 2015 and considering future conditions. The findings indicate that by 2050, seven countries within the region could transform into net energy exporters, while the remaining nine might remain reliant on energy imports or fossil fuels. Egypt emerges as a "powerhouse", potentially enjoying a potential surplus energy generation of 76 GW per hour, whereas the United Arab Emirates may face an annual deficit of 955 TWh. Further, we derived the hourly generation profiles for wind and solar during different seasons. Four dominant patterns were identified. We find a complementary relationship for six countries, and for four countries, a substitute relationship between solar and wind energy generation. Greece stands out with a near-constant wind energy source, which would facilitate its integration into the national grid.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.172120 | DOI Listing |
Biomed Phys Eng Express
January 2025
Mindanao Radiation Physics Center, MSU-Iligan Institute of Technology, Andres Bonifacio Street Tibanga, Iligan City, Lanao Norte, 9200, PHILIPPINES.
To accurately model and validate the 6 MV Elekta Compactlinear accelerator using the Geant4 Application for Tomographic Emission (GATE). In particular, this study focuses on the precise calibration and validation of critical parameters, including jaw collimator positioning, electron source nominal energy, flattening filter geometry, and electron source spot size, which are often not provided in technical documentation. Methods: Simulation of the Elekta Compact6 MV linear accelerator was performed using the Geant4 Application for Tomographic Emission (GATE) v.
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2025
Physics Department, University at Albany, 1400 Washington Ave, Albany, New York, 12222-0100, UNITED STATES.
Conventional x-ray radiography relies on attenuation differences in the object, which often results in poor contrast in soft tissues. X-ray phase imaging has the potential to produce higher contrast but can be difficult to utilize. Instead of grating-based techniques, analyzer-based imaging, also known as diffraction enhanced imaging (DEI), uses a monochromator crystal with an analyzer crystal after the object.
View Article and Find Full Text PDFNanotechnology
January 2025
Xidian University, Xi'an 710071, China, Xi'an, Xian, Shaanxi, 710126, CHINA.
Anti-ambipolar transistors (AAT) are considered as a breakthrough technology in the field of electronics and optoelectronics, which is not only widely used in diverse logic circuits, but also crucial for the realization of high-performance photodetectors. The anti-ambipolar characteristics arising from the gate-tunable energy band structure can produce high-performance photodetection at different gate voltages. As a result, this places higher demands on the parametric driving range (ΔVg) and peak-to-valley ratio (PVR) of the AAT.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Grundlagen von Energiematerialien, Institut für Physik, Technische Universität Ilmenau, 98693 Ilmenau, Germany.
To date, III-V semiconductor-based tandem devices with GaInP top photoabsorbers show the highest solar-to-electricity or solar-to-fuel conversion efficiencies. In photoelectrochemical (PEC) cells, however, III-V semiconductors are sensitive, in terms of photochemical stability and, therefore, require suitable functional layers for electronic and chemical passivation. GaN films are discussed as promising options for this purpose.
View Article and Find Full Text PDFAppl Physiol Nutr Metab
January 2025
The University of British Columbia, Faculty of Health and Social Development, Kelowna, British Columbia, Canada;
The objectives of the study were to: 1) Describe characteristics and lifestyle factors of individuals who have achieved type 2 diabetes (T2D) remission (sub-diabetes glucose levels without glucose-lowering medications for ≥3 months) through changes to diet and exercise behaviour in real-world settings; 2) Investigate continuous glucose monitoring (CGM) profiles of these individuals and explore how dietary pattern may influence glucose regulation metrics. This cross-sectional study recruited individuals living with T2D who achieved remission via changes to diet or exercise behaviours. Various questionnaires were used to assess overall health and participants wore a blinded CGM for 14 days to assess glucose profiles and filled out three-day food records.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!