Defining a TFAP2C-centered transcription factor network during murine peri-implantation.

Dev Cell

Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China. Electronic address:

Published: May 2024

AI Article Synopsis

  • Transcription factors (TFs) are crucial for early embryonic development, but how they interact with other regulatory factors and influence cell fate transitions is not fully understood.
  • This study utilized uliCUT&RUN-seq to map a regulatory network centered around TFAP2C, demonstrating its role in promoter-enhancer interactions and regulation of other important factors like TEAD4 and KLF5 for cell polarization.
  • The research suggests that maternal retinoic acid metabolism affects TFAP2C through SINE demethylation, and it presents a model where metabolic, epigenetic, and genetic factors connect in regulating TFs during embryonic development.

Article Abstract

Transcription factors (TFs) play important roles in early embryonic development, but factors regulating TF action, relationships in signaling cascade, genome-wide localizations, and impacts on cell fate transitions during this process have not been clearly elucidated. In this study, we used uliCUT&RUN-seq to delineate a TFAP2C-centered regulatory network, showing that it involves promoter-enhancer interactions and regulates TEAD4 and KLF5 function to mediate cell polarization. Notably, we found that maternal retinoic acid metabolism regulates TFAP2C expression and function by inducing the active demethylation of SINEs, indicating that the RARG-TFAP2C-TEAD4/KLF5 axis connects the maternal-to-zygotic transition to polarization. Moreover, we found that both genomic imprinting and SNP-transferred genetic information can influence TF positioning to regulate parental gene expressions in a sophisticated manner. In summary, we propose a ternary model of TF regulation in murine embryonic development with TFAP2C as the core element and metabolic, epigenetic, and genetic information as nodes connecting the pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.devcel.2024.03.015DOI Listing

Publication Analysis

Top Keywords

embryonic development
8
defining tfap2c-centered
4
tfap2c-centered transcription
4
transcription factor
4
factor network
4
network murine
4
murine peri-implantation
4
peri-implantation transcription
4
transcription factors
4
factors tfs
4

Similar Publications

Formononetin promotes porcine oocytes maturation and improves embryonic development by reducing oxidative stress.

Front Cell Dev Biol

January 2025

Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China.

Increasing evidence has demonstrated that oxidative stress impairs oocyte maturation and embryonic development. Conventionally, antioxidants have been applied systems to improve oocyte maturation and blastocyst rates. Formononetin (FMN) is a flavonoid that has been shown to have various pharmacological effects, including antioxidants.

View Article and Find Full Text PDF

Exosomes: new targets for understanding axon guidance in the developing central nervous system.

Front Cell Dev Biol

January 2025

Key Laboratory of Tropical Translational Medicine and Ministry of Education, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China.

Axon guidance is a key event in neural circuit development that drives the correct targeting of axons to their targets through long distances and unique patterns. Exosomes, extracellular vesicles that are smaller than 100 nm, are secreted by most cell types in the brain. Regulation of cell-cell communication, neuroregeneration, and synapse formation by exosomes have been extensively studied.

View Article and Find Full Text PDF

Extensive uses of silver nanoparticles (Ag NPs) in different industries result in exposure to these nanoparticle imperatives in our daily lives. Resveratrol is found in many plants as a natural compound. The present study aimed to estimate the renal toxic effects of Ag NPs in adult male albino rats and the underlying relevant mechanisms while studying the possible role of resveratrol in ameliorating these effects.

View Article and Find Full Text PDF

Objectives: Nonalcoholic fatty liver disease (NAFLD) is known to disrupt testicular anti-oxidant capacity, leading to oxidative stress (OS) that can negatively affect male fertility by damaging sperm DNA. Heat shock proteins (HSP70 and HSP90), in association with transitional proteins (TP1 and TP2), play crucial roles in protecting sperm DNA integrity in oxidative conditions. Whiteleg shrimp protein hydrolysates (HPs) exhibit anti-oxidant properties, prompting this study to explore the potential of HPs in ameliorating NAFLD-induced testicular damage.

View Article and Find Full Text PDF

Hydroxytyrosol protects isoproterenol-induced myocardial infarction through activating notch signaling.

Iran J Basic Med Sci

January 2025

Department of Medical Pharmacology, Faculty of Medicine, Adıyaman University, Adıyaman, 02040, Turkey.

Objectives: In this investigation, the protective effects of hydroxytyrosol (HT) administered prior to myocardial infarction in rats were examined, with a particular focus on its potential roles within the Notch pathway.

Materials And Methods: The animals were categorized into seven groups (n=7): control, myocardial infarction (MI) 6 hr, MI 24 hr, MI 7 day, MI+HT 6 hr, MI+HT 24 hr, MI+HT 7 day. In order to create infarction, the rats received a subcutaneous injection of isoproterenol at a dose of 200 mg/kg.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!