Formation, physicochemical properties, and biological activities of theabrownins.

Food Chem

Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China; School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China. Electronic address:

Published: August 2024

Theabrownins (TBs) are heterogeneous mixtures of water-soluble brown tea pigments, and important constituents to evaluate the quality of dark tea. TBs have numerous hydroxyl and carboxyl groups and are formed by the oxidative polymerization of tea polyphenols. Many biological activities attributed to TBs, including antioxidant, anti-obesity, and lipid-regulating, have been demonstrated. This review summarizes the research progress made on the formation mechanism and physicochemical properties of TBs. It also discusses their protective effects against various diseases and associated potential molecular mechanisms. Additionally, it examines the signaling pathways mediating the bioactivities of TBs and highlights the difficulties and challenges of TBs research as well as their research prospects and applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.139140DOI Listing

Publication Analysis

Top Keywords

physicochemical properties
8
biological activities
8
tbs
6
formation physicochemical
4
properties biological
4
activities theabrownins
4
theabrownins theabrownins
4
theabrownins tbs
4
tbs heterogeneous
4
heterogeneous mixtures
4

Similar Publications

Development of a novel multi-epitope mRNA vaccine candidate to combat SFTSV pandemic.

PLoS Negl Trop Dis

January 2025

Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China.

Severe Fever with Thrombocytopenia Syndrome virus (SFTSV) is a novel identified pathogen, despite two decades of research on SFTSV, the potential widespread threats pose a significant challenge for researchers in developing new treatment and prevention methods. In this present, we have developed a multi-epitope mRNA vaccine for SFTSV and valid it with in silico methods. We screened 9 immunodominant epitopes for cytotoxic T cells (CTL), 7 for helper T cells (HTL), and 8 for Linear B-cell (LBL) based on promising candidate protein Gn, Gc, Np, and NSs.

View Article and Find Full Text PDF

AggNet: Advancing protein aggregation analysis through deep learning and protein language model.

Protein Sci

February 2025

Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.

Protein aggregation is critical to various biological and pathological processes. Besides, it is also an important property in biotherapeutic development. However, experimental methods to profile protein aggregation are costly and labor-intensive, driving the need for more efficient computational alternatives.

View Article and Find Full Text PDF

Animal-based foods such as meat, dairy, and eggs contain abundant essential proteins, vitamins, and minerals that are crucial for human nutrition. Therefore, there is a worldwide growing demand for animal-based products. Since animal-based foods are vital resources of nutrients, it is essential to ensure their microbial safety which may not be ensured by traditional food preservation methods.

View Article and Find Full Text PDF

Characterization of Amorphous Ibrutinib Thermal Stability.

Org Process Res Dev

January 2025

Department of Chemical Engineering, University of Chemistry and Technology, Technická 3, Prague 6, Dejvice 166 28, Czech Republic.

The choice of method for drug amorphization depends on various factors, including the physicochemical properties of the active pharmaceutical ingredients, the desired formulation, and scalability requirements. It is often important to consider a combination of methods or the use of excipients to further enhance the stability and performance of the amorphous drug. This study presents a comparison of techniques including melt quench, hot melt extrusion, solvent evaporation, ball milling, and lyophilization used for the preparation of amorphous ibrutinib.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!