Air sampling and ATP bioluminescence for quantitative detection of airborne microbes.

Talanta

Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China. Electronic address:

Published: July 2024

Exposure to bioaerosol contamination has detrimental effects on human health. Recent advances in ATP bioluminescence provide more opportunities for the quantitative detection of bioaerosols. Since almost all active organisms can produce ATP, the amount of airborne microbes can be easily measured by detecting ATP-driven bioluminescence. The accurate evaluation of microorganisms mainly relies on following the four key steps: sampling and enrichment of airborne microbes, lysis for ATP extraction, enzymatic reaction, and measurement of luminescence intensity. To enhance the effectiveness of ATP bioluminescence, each step requires innovative strategies and continuous improvement. In this review, we summarized the recent advances in the quantitative detection of airborne microbes based on ATP bioluminescence, which focuses on the advanced strategies for improving sampling devices combined with ATP bioluminescence. Meanwhile, the optimized and innovative strategies for the remaining three key steps of the ATP bioluminescence assay are highlighted. The aim is to reawaken the prosperity of ATP bioluminescence and promote its wider utilization for efficient, real-time, and accurate detection of airborne microbes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2024.126025DOI Listing

Publication Analysis

Top Keywords

atp bioluminescence
28
airborne microbes
20
quantitative detection
12
detection airborne
12
atp
9
bioluminescence
8
key steps
8
innovative strategies
8
airborne
5
microbes
5

Similar Publications

Fluorofurimazine, a novel NanoLuc substrate, enhances real-time tracking of influenza A virus infection without altering pathogenicity in mice.

Microbiol Spectr

January 2025

Department of Microbiology and Immunology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, Alabama, USA.

Unlabelled: Bioluminescence imaging (BLI) using engineered bioluminescent viruses has emerged as a powerful tool for real-time, noninvasive monitoring of viral replication in living animals. While traditional luciferase-based systems, such as firefly luciferase, have been widely used, the NanoLuc luciferase system offers distinct advantages, including its significantly smaller gene size, increased brightness, and independence from ATP as a cofactor, allowing for extracellular detection. However, the utility of NanoLuc has been limited by its traditional substrate, furimazine, which exhibits poor water solubility and potential cytotoxicity.

View Article and Find Full Text PDF

The serine/threonine protein kinase CK2, a tetramer composed of a regulatory dimer (CK2β2) bound to two catalytic subunits CK2α, is a well-established therapeutic target for various pathologies, including cancer and viral infections. Several types of CK2 inhibitors have been developed, including inhibitors that bind to the catalytic ATP-site, bivalent inhibitors that occupy both the CK2α ATP-site and the αD pocket, and inhibitors that target the CK2α/CK2β interface. Interestingly, the bivalent inhibitor AB668 shares a similar chemical structure with the interface inhibitor CCH507.

View Article and Find Full Text PDF

The highest unqualified cleaning rate of suction-type lumen instruments is a major challenge for a central sterile supply department (CSSD). However, A few comprehensive studies have analyzed the main factors affecting cleaning quality. In response, this study aimed to explore the current state and the factors affecting the cleaning quality of reused suction-type metal lumen instruments in CSSD.

View Article and Find Full Text PDF

Renewed scientific interest in sympathetic modulation of muscle and neuromuscular junctions has spurred a flurry of new discoveries with major implications for motor diseases. However, the role sympathetic axons play in the persistent dysfunction that occurs after nerve injuries remains to be explored. Peripheral nerve injuries are common and lead to motor, sensory, and autonomic deficits that result in lifelong disabilities.

View Article and Find Full Text PDF

Luciferase, known for its exceptional catalytic bioluminescent properties, has been widely utilized in diverse applications within biotechnology and medical research. Currently, enhancing thermostability and catalytic activity is a primary focus for optimizing luciferase modifications to further expand its detection range and accuracy. This study revealed a highly thermostable luciferase variant from Photuris pennsylvanica, Ppe146-1H2, which inherently exhibits thermophilic enzyme characteristics that are not conducive for optimal catalytic performance in practical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!