In this work, a highly sensitive lung cancer biomarkers detection probe was developed based on Ag and MXene co-functionalized magnetic microspheres. By using carboxyl magnetic microspheres as carrier, MXene was coated repeatedly by Poly (allylamine hydrochloride) (PAH) as interlayer adhesive, and silver particles grown on the surface of MXene in situ can efficiently improve the sensitivity of the probe. The detection of neuron specific enolase (NSE) is mainly through the formation of a specific complex between NSE antigen and antibody, and the release of antibody labeled with amino carbon quantum dots (CQDs) from the surface of Ag nanoparticles (AgNPs), so that the fluorescence is restored and "OFF-ON" is formed. The biosensor exhibits excellently wide linear range (0.0001-1500 ng/mL) and the limit of detection (LOD) is up to 0.03 pg/mL, which is superior to most tumor marker probes based on fluorescence mechanism. Furthermore, we constructed dual detection strategy for NSE and carcinoembryonic antigen (CEA) simultaneously.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2024.126022 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!