This prospective study investigated the relationship between inflammation, damage-associated molecular patterns (DAMPs), and thrombus formation on dialyzer membranes in critically ill patients undergoing renal replacement therapy (RRT) from July 2020 to August 2022, identifying mechanisms and interventions to prevent clotting. The patients were divided into two groups: inflammatory (n = 56, serum C-reactive protein >10 mg/dl) and noninflammatory control (n = 45, serum C-reactive protein <5 mg/dl). Cell-free deoxyribonucleic acid (DNA) levels, high mobility group box 1 protein (HMGB1), histone H3, and myeloperoxidase (MPO) in the lumen of the hollow fiber membrane of the dialyzer were quantified. Immunostaining assessed leukocytes, fibrin fibers, and platelet thrombi on the luminal surface of the hollow fiber membrane. The inflammatory group, compared to controls, exhibited elevated cell-free DNA, HMGB1, and MPO levels, although histone H3 remained unchanged. Damage-associated molecular patterns increased with disseminated intravascular coagulation (DIC) severity. Immunostaining in the inflammatory group revealed leukocytes, amorphous nuclei, neutrophil extracellular trap-like structures, fibrin fibers, and platelet thrombi on the hollow fiber membrane's luminal surface. Elevated DAMP levels in severely inflamed patients' dialyzer membranes, correlating with DIC severity, indicate a link between inflammation, coagulation activation, and dialyzer clotting. Research into thrombus prevention in RRT for DIC-affected critically ill patients is warranted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11426985PMC
http://dx.doi.org/10.1097/MAT.0000000000002200DOI Listing

Publication Analysis

Top Keywords

damage-associated molecular
8
molecular patterns
8
thrombus formation
8
formation dialyzer
8
critically ill
8
ill patients
8
serum c-reactive
8
c-reactive protein
8
patterns mediators
4
mediators thrombus
4

Similar Publications

The study of nutritional compounds with the potential to train the innate immune response has implications for human health. The objective of the current study was to discover by what means 6 weeks of oral baker's yeast beta glucan (BYBG) supplementation altered the mRNA expression of genes that reflect innate immune training in the absence of a physical stressor. Nineteen adults were randomly assigned to either a Wellmune BYBG or Placebo for 6 weeks.

View Article and Find Full Text PDF

Multi-pathway oxidative stress amplification via controllably targeted nanomaterials for photoimmunotherapy of tumors.

J Nanobiotechnology

January 2025

Yantai Engineering Research Center for Digital Technology of Stomatology, School of Stomatology, Binzhou Medical University, Yantai, 264003, China.

Photoimmunotherapy, which combines phototherapy with immunotherapy, exhibits significantly improved therapeutic effects compared with mono-treatment regimens. However, its use is associated with drawbacks, such as insufficient reactive oxygen species (ROS) production and uneven photosensitizer distribution. To address these issues, we developed a controllable, targeted nanosystem that enhances oxidative stress through multiple pathways, achieving synergistic photothermal, photodynamic, and immunotherapy effects for tumor treatment.

View Article and Find Full Text PDF

High-mobility group box 1 (HMGB1) is a highly conserved nuclear protein involved in key nuclear processes such as DNA repair, replication, and gene regulation. Beyond its established nuclear roles, HMGB1 has crucial functions in the cytoplasm and extracellular environment. When translocated to the cytoplasm, HMGB1 plays a role in autophagy, cell survival, and immune response modulation.

View Article and Find Full Text PDF

Background: Cellular histones are DNA-binding nuclear proteins involved in chromatin remodelling and regulation of gene expression. However, extracellular histones act as damage-associated molecular patterns (DAMPs) and contribute to multiorgan damage in conditions with sepsis and diseases with acute critical illnesses. Alongside, histones are associated with thrombocytopenia due to dysfunctional platelets that regulate hemostasis and thrombosis.

View Article and Find Full Text PDF

The liver, a major organ involved in substance metabolism, is highly susceptible to toxicity induced by chemicals and their metabolites. Although damage-associated molecular patterns (DAMPs) have been implicated in the development of sterile inflammation following cell injury, their involvement in chemically induced hepatocellular injury remains underexplored. This study aimed to determine the role of high-mobility group box 1 (HMGB1), a DAMP, in a rat model of liver injury treated with thioacetamide, a hepatotoxicant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!