In the past, Cu-oxo or -hydroxy clusters hosted in zeolites have been suggested to enable the selective conversion of methane to methanol, but the impact of the active site's stoichiometry and structure on methanol production is still poorly understood. Herein, we apply theoretical modeling in conjunction with experiments to study the impact of these two factors on partial methane oxidation in the Cu-exchanged zeolite SSZ-13. Phase diagrams developed from first-principles suggest that Cu-hydroxy or Cu-oxo dimers are stabilized when O or NO are used to activate the catalyst, respectively. We confirm these predictions experimentally and determine that in a stepwise conversion process, Cu-oxo dimers can convert twice as much methane to methanol compared to Cu-hydroxyl dimers. Our theoretical models rationalize how Cu-di-oxo dimers can convert up to two methane molecules to methanol, while Cu-di-hydroxyl dimers can convert only one methane molecule to methanol per catalytic cycle. These findings imply that in Cu clusters, at least one oxo group or two hydroxyl groups are needed to convert one methane molecule to methanol per cycle. This simple structure-activity relationship allows to intuitively understand the potential of small oxygenated or hydroxylated transition metal clusters to convert methane to methanol.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202403179DOI Listing

Publication Analysis

Top Keywords

convert methane
20
methane methanol
16
dimers convert
12
impact active
8
methane
8
conversion methane
8
methanol
8
cu-oxo dimers
8
methane molecule
8
molecule methanol
8

Similar Publications

Peatlands are invaluable but threatened ecosystems that store huge amounts of organic carbon globally and emit the greenhouse gasses carbon dioxide (CO) and methane (CH). Trophic interactions of microbial groups essential for methanogenesis are poorly understood in such systems, despite their importance. Thus, the present study aimed at unraveling trophic interactions between fermenters and methanogens in a nitrogen-limited, subarctic, pH-neutral fen.

View Article and Find Full Text PDF

Tropical peatlands significantly influence local and global carbon and nitrogen cycles, yet they face growing pressure from anthropogenic activities. Land use changes, such as peatland forests conversion to oil palm plantations, affect the soil microbiome and greenhouse gas (GHG) emissions. However, the temporal dynamics of microbial community changes and their role as GHG indicators are not well understood.

View Article and Find Full Text PDF

Solar-Driven Sulfide Oxidation Paired With CO Reduction Based on Vacancies Engineering of Copper Selenide.

Small

December 2024

Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, State Key Laboratory of Photovoltaic Materials and Cells, Nankai University, Tianjin, 300350, P. R. China.

Photovoltaic-driven electrochemical (PV-EC) carbon dioxide reduction (COR) coupled with sulfide oxidation (SOR) can efficiently convert the solar energy into chemical energy, expanding its applications. However, developing low-cost electrocatalysts that exhibit high selectivity and efficiency for both COR and SOR remains a challenge. Herein, a bifunctional copper selenide catalyst is developed with copper vacancies (v-CuSe) for the COR-SOR.

View Article and Find Full Text PDF

Introducing La into a Customized Dual Cu Covalent Organic Framework to Steer CO Electroreduction Selectivity from CH to CH.

Adv Mater

December 2024

Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.

Article Synopsis
  • Customizing multi-metal site catalysts can enhance control over CO reduction reactions (CORR), but traditional methods are limited and unpredictable.
  • A new bottom-up strategy using covalent organic frameworks (COFs) allows for more controlled synthesis and tuning of active sites by adjusting their electronic structures.
  • The introduction of the La element specifically enhances the performance of dual Cu sites, enabling a shift in the main product from ethylene to methane and showcasing a novel approach to catalyst design.
View Article and Find Full Text PDF

Development of cerium-doped porous composite aerogel using cellulose nanocrystals for enhanced CO capture and conversion.

J Colloid Interface Sci

December 2024

School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China. Electronic address:

Reducing carbon dioxide (CO) levels in the atmosphere is crucial for combating global warming. One effective strategy involves using porous materials for the combined processes of CO capture and catalytic conversion. In this study, we developed composite aerogel materials using cellulose nanocrystals (CNCs) as templates, doped with cerium oxide, to enhance CO capture and conversion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!