Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Endowing conventional materials with specific functions that are hardly available is invariably of significant importance but greatly challenging. TiO is proven to be highly active for the photocatalytic hydrogen evolution while intrinsically inert for electrocatalytic hydrogen evolution reaction (HER) due to its poor electrical conductivity and unfavorable hydrogen adsorption/desorption behavior. Herein, the first activation of inert TiO for electrocatalytic HER is demonstrated by synergistically modulating the positions of d-band center and triggering hydrogen spillover through the dual doping-induced partial phase transition. The N, F co-doping-induced partial phase transition from anatase to rutile phase in TiO (AR-TiO|(N,F)) exhibits extraordinary HER performance with overpotentials of 74, 80, and 142 mV at a current density of 10 mA cm in 1.0 M KOH, 0.5 M HSO, and 1.0 M phosphate-buffered saline electrolytes, respectively, which are substantially better than pure TiO, and even superior to the benchmark Pt/C catalysts. These findings may open a new avenue for the development of low-cost alternative to noble metal catalysts for electrocatalytic hydrogen production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202400783 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!