A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Anti-Solvent-Free Fabrication of Stable FACsPbI Perovskite Solar Cells with Efficiency Exceeding 24.0% through a Naphthalene-Based Passivator. | LitMetric

Anti-Solvent-Free Fabrication of Stable FACsPbI Perovskite Solar Cells with Efficiency Exceeding 24.0% through a Naphthalene-Based Passivator.

Small

State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, New Energy Generation National Engineering Research Center, Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Beijing, 102206, China.

Published: August 2024

The anti-solvent-free fabrication of high-efficiency perovskite solar cells (PSCs) holds immense significance for the transition from laboratory-scale to large-scale commercial applications. However, the device performance is severely hindered by the increased occurrence of surface defects resulting from the lack of control over nucleation and crystallization of perovskite using anti-solvent methods. In this study, 2-(naphthalen-2-yl)ethylamine hydriodide (NEAI) is employed as the surface passivator for perovskite films without using any anti-solvent. Naphthalene demonstrates strong π-π conjugation, which aids in the efficient extraction of charge carriers. Additionally, the naphthalene-ring moieties form a tight attachment to the perovskite surface. After NEAI treatment, FA and I vacancies are selectively occupied by NEA and I in NEAI respectively, thus effectively passivating the surface defects and isolating the surface from moisture. Ultimately, the optimized NEAI-treated device achieves a promising power conversion efficiency (PCE) of 24.19% (with a certified efficiency of 23.94%), featuring a high fill factor of 83.53%. It stands out as one of the reported high PCEs achieved for PSCs using the spin-coating technique without the need for any anti-solvent so far. Furthermore, the NEAI-treated device can maintain ≈87% of its initial PCE after 2000 h in ambient air with a relative humidity of 30% ± 5%.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202401669DOI Listing

Publication Analysis

Top Keywords

anti-solvent-free fabrication
8
perovskite solar
8
solar cells
8
surface defects
8
neai-treated device
8
perovskite
5
surface
5
fabrication stable
4
stable facspbi
4
facspbi perovskite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!