Noninvasive and Multiplex Self-Test of Kidney Disease Biomarkers with Graphene-Based Lab-on-a-Chip (G-LOC): Toward Digital Diagnostics in the Hands of Patients.

Anal Chem

Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)-Departamento de Química-Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CONICET. 64 and 113, 1900 Buenos Aires, Argentina.

Published: April 2024

Chronic kidney disease is one of the major health issues worldwide. However, diagnosis is now highly centralized in large laboratories, resulting in low access to patient monitoring and poor personalized treatments. This work reports the development of a graphene-based lab-on-a-chip (G-LOC) for the digital testing of renal function biomarkers in serum and saliva samples. G-LOC integrates multiple bioelectronic sensors with a microfluidic system that enables multiplex self-testing of urea, potassium, sodium, and chloride. The linearity, limit of detection (LOD), accuracy, and coefficient of variability (CV) were studied. Accuracy values higher than 95.5% and CV lower than 9% were obtained for all of the biomarkers. The analytical performance was compared against three reference lab benchtop analyzers by measuring healthy- and renal-failure-level samples of serum. From receiver operating characteristic (ROC) plots, sensitivities (%) of 99.7, 97.6, 99.1, and 89.0 were obtained for urea, potassium, sodium, and chloride, respectively. Then, the test was evaluated in noninvasive saliva samples and compared against reference methods. Correlation and Bland-Altman plots showed good correlation and agreement of the G-LOC with the reference methods. It is noteworthy that the precision of G-LOC was similar to better than benchtop lab analyzers, with the advantage of being highly portable. Finally, a user testing study was conducted. The analytical performance obtained with untrained volunteers was similar to that obtained with trained chemists. Additionally, based on a user experience survey, G-LOC was found to have very simple usability and would be suitable for at-home diagnostics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.3c05148DOI Listing

Publication Analysis

Top Keywords

kidney disease
8
graphene-based lab-on-a-chip
8
lab-on-a-chip g-loc
8
g-loc digital
8
saliva samples
8
urea potassium
8
potassium sodium
8
sodium chloride
8
analytical performance
8
reference methods
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!