Scalable, Interfacially Synthesized, Covalent-Organic Framework (COF)-Based Thin-Film Composite (TFC) Hollow Fiber Membranes for Organic Solvent Nanofiltration (OSN).

ACS Appl Mater Interfaces

Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune 411008, India.

Published: April 2024

AI Article Synopsis

  • Covalent organic frameworks (COFs) show promise for energy-efficient molecular separation but face challenges in scalable, cost-effective fabrication for membrane use.
  • A new method introduces an interfacial polymerization approach to create scalable COF hollow fiber membranes at room temperature, achieving high rejection rates and good solvent permeance.
  • The study confirms the importance of solute structure in rejection performance, demonstrates the membrane's durability in organic solvents, and suggests the method could be expanded for improved applications in molecular sieving with charged COF membranes.

Article Abstract

Covalent organic frameworks have great potential for energy-efficient molecular sieving-based separation. However, it remains challenging to implement COFs as an alternative membrane material due to the lack of a scalable and cost-effective fabrication mechanism. This work depicts a new method for fabricating a scalable in situ COF hollow fiber (HF) membrane by an interfacial polymerization (IP) approach at room temperature. The 2D COF film was constructed on a polyacrylonitrile HF substrate using aldehyde (1,3,5-trimethylphloroglucinol, Tp) and amine (4,4'-azodianiline (Azo) and 4,4',4″-(1,3,5-triazine- 2,4,6-triyl) trianiline (Tta)) as precursors. The COF membrane on the PAN substrate showed 99% rejection of Direct red-80 with remarkable solvent permeance. The rejection analysis revealed that the structural aspects of the solute molecule play a major role in rejection rather than the molecular weight. We further optimized the precursor concentrations to improve the permeation performance of the resulting membrane. The durability study reveals excellent stability of the membrane toward organic solvents. This study also demonstrated the easy scalability of the membrane fabrication approach. The approach was further extrapolated to fabricate a cation-based COF membrane. These charged membranes exhibited an enhanced rejection performance. Finally, this approach can facilitate industrially challenging molecular sieving applications using COF-based membranes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c00305DOI Listing

Publication Analysis

Top Keywords

hollow fiber
8
cof membrane
8
membrane
7
scalable interfacially
4
interfacially synthesized
4
synthesized covalent-organic
4
covalent-organic framework
4
framework cof-based
4
cof-based thin-film
4
thin-film composite
4

Similar Publications

Computational fluid particle dynamics modeling of tangential flow filtration in perfusion cell culture.

Bioprocess Biosyst Eng

January 2025

Cell Culture Development, Biogen, 5000 Davis Drive, Research Triangle Park, NC, 27709, USA.

Membrane fouling is a common and complex challenge with cell culture perfusion process in biopharmaceutical manufacturing that can have detrimental effects on the process performance. In this study, we evaluated a method to calculate the hollow fiber membrane resistance at different time points for water and supernatant. In addition, the number of subvisible particles of < 200 nm.

View Article and Find Full Text PDF

Suboptimal spatial utilization and inefficient access to internal porosity preclude porous carbon cathodes from delivering high energy density in zinc-ion hybrid capacitors (ZIHCs). Inspired by the function of capillaries in biological systems, this study proposes a facile coordination-pyrolysis method to fabricate thin-walled hollow carbon nanofibers (CNFs) with optimized pore structure and surface functional groups for ZHICs. The capillary-like CNFs maximize the electrode/electrolyte interface area, facilitating the optimal utilization of energy storage sites.

View Article and Find Full Text PDF

Cryopreservation enhances the availability of "off-the-shelf" cell therapies. However, the choice between tissue culture polystyrene (TCP) and hollow fiber system (HFB) system for adipose-derived stem cell (ASC) production remains a critical decision, with implications for scalability, reproducibility, and the clinical efficacy. Therefore, the characteristics of ASCs expanded in TCP and HFB and cryopreserved were compared.

View Article and Find Full Text PDF

Retraction notice to "Air-liquid interface cultivation of Navicula incerta using hollow fiber membranes"[Chemosphere 307 (2022) 135625].

Chemosphere

December 2024

Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China; Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, B34, Semenyih, 43500, Selangor, Malaysia.

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/policies/article-withdrawal).

View Article and Find Full Text PDF

Mycobacterium avium complex bacteria cause chronic pulmonary disease (MAC-PD) in susceptible patients [1]. The recommended treatment regimen (rifampicin, ethambutol and azithromycin) achieves 65% cure rates but with considerable toxicity and drug-drug interactions [2,3]. Minocycline proved active in monotherapy experiments using the hollow-fibre model [4].

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!