Introduction: The significance of this review lies in addressing the limitations of passive locomotion in capsule endoscopes, hindering their widespread use in medical applications. The research focuses on evaluating existing miniature in vivo remote-controlled capsule endoscopes, examining their locomotion designs, and working theories to pave the way for overcoming challenges and enhancing their applicability in diagnostic and treatment settings.

Areas Covered: This paper explores control methods and dynamic system modeling in the context of self-propelled remote-controlled capsule endoscopes with a two-mass arrangement. The literature search, conducted at Queen Mary University of London Library from 2000 to 2022, utilized a systematic approach starting with the broad keyword 'Capsule Endoscope' and progressively narrowing down to specific aspects such as 'Capsule Endoscope Control' and 'Self-propelled Capsule Endoscope' using various criteria.

Expert Opinion: Efficiently driving and controlling remote-controlled capsule endoscopes have the potential to overcome the current limitations in medical technology, offering a viable solution for diagnosing and treating gastrointestinal diseases. Successful control of the remote-controlled capsule endoscope, as demonstrated in this review paper, will lead to a step change in medical engineering, establishing the remote-controlled capsule endoscope as a swift standard in the field.

Download full-text PDF

Source
http://dx.doi.org/10.1080/17434440.2024.2336135DOI Listing

Publication Analysis

Top Keywords

remote-controlled capsule
24
capsule endoscopes
20
control remote-controlled
8
capsule
8
capsule endoscope
8
remote-controlled
6
endoscopes
5
review modeling
4
modeling control
4
endoscopes introduction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!