Smart biosensors attract significant interest due to real-time monitoring of user health status, where bioanalytical electronic devices designed to detect various activities and biomarkers in the human body have potential applications in physical sign monitoring and health care. Bioelectronics can be well integrated by output signals with wireless communication modules for transferring data to portable devices used as smart biosensors in performing real-time diagnosis and analysis. In this review, the scientific keys of biosensing devices and the current trends in the field of smart biosensors, (functional materials, technological approaches, sensing mechanisms, main roles, potential applications and challenges in health monitoring) will be summarized. Recent advances in the design and manufacturing of bioanalytical sensors with smarter capabilities and enhanced reliability indicate a forthcoming expansion of these smart devices from laboratory to clinical analysis. Therefore, a general description of functional materials and technological approaches used in bioelectronics will be presented after the sections of scientific keys to bioanalytical sensors. A careful introduction to the established systems of smart monitoring and prediction analysis using bioelectronics, regarding the integration of machine-learning-based basic algorithms, will be discussed. Afterward, applications and challenges in development using these smart bioelectronics in biological, clinical, and medical diagnostics will also be analyzed. Finally, the review will conclude with outlooks of smart biosensing devices assisted by machine learning algorithms, wireless communications, or smartphone-based systems on current trends and challenges for future works in wearable health monitoring.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468404 | PMC |
http://dx.doi.org/10.1002/adhm.202303923 | DOI Listing |
Biosensors (Basel)
January 2025
Laboratory of Biochemistry, Molecular Biology and Bioluminescent Systems Technology, Department of Physics, Chemistry and Mathematics, Federal University of Sao Carlos (UFSCAR), Rodovia João Leme dos Santos, km 110, Sorocaba 18052-780, SP, Brazil.
Firefly luciferases have been extensively used for bioanalytical applications, including their use as bioluminescent reporters, biosensors, and for bioimaging biological and pathological processes. Due to their intrinsic pH- sensitivity, in recent years we have demonstrated that firefly luciferases can also be harnessed as color- tuning sensors of intracellular pH. However, it is known that mammalian cells require temperatures higher than 36 °C, which red-shift the bioluminescence spectra of most firefly luciferases, decreasing their activities and the resolution of ratiometric pH analysis.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
College of Mathematical Medicine, Zhejiang Normal University, Jinhua, China; Affiliated Dongyang Hospital of Wenzhou Medical University, Jinhua, China. Electronic address:
Pathological conditions in organisms often arise from various cellular or tissue abnormalities, including dysregulation of cell numbers, infections, aberrant differentiation, and tissue pathologies such as lung tumors and skin tumors. Thus, developing methods for analyzing and identifying these biological abnormalities presents a significant challenge. While traditional bioanalytical methods such as flow cytometry and magnetic resonance imaging are well-established, they suffer from inefficiencies, high costs, complexity, and potential hazards.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 730070, Lanzhou, Gansu, China. Electronic address:
Background: Reliable and selective detection of dopamine is crucial for the early diagnosis of various diseases. Transition metal based-nanozymes have shown great promise in the field of colorimetric detection of dopamine due to their remarkable stability and exceptional catalytic efficiency. However, these transition metal-based nanozymes typically function through a chromogenic reaction that relies on additional organic substrates, such as 3,3',5,5'-tetramethylbenzidine, to generate a detectable signal.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970 Araras, São Paulo, Brazil.
A few decades ago, the technological boom revolutionized access to information, ushering in a new era of research possibilities. Electrochemical devices have recently emerged as a key scientific advancement utilizing electrochemistry principles to detect various chemical species. These versatile electrodes find applications in diverse fields, such as healthcare diagnostics and environmental monitoring.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, 450001, China.
Background: Heparin is a widely used anticoagulant in clinic. However, improper dosing can increase the risk of thromboembolic events, potentially leading to life-threatening complications. Clinic monitoring of heparin is very important for its use safety.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!