Multicriteria GIS-based assessment of biomass energy potentials in Nigeria.

Front Bioeng Biotechnol

Department of Electrical and Electronics Engineering, Faculty of Engineering and Natural Science, Istinye University, Istanbul, Türkiye.

Published: March 2024

AI Article Synopsis

  • * The study evaluates various factors such as crop and forest areas, accessibility, and environmental conditions to identify regions most suitable for biomass plants, revealing that the North-East and North-West regions have the highest energy potential from crop and forest residues, respectively.
  • * The findings align with Nigeria's bio-energy policy goals to utilize non-fuelwood resources and support forest conservation efforts, which is crucial for addressing energy insecurity and fulfilling commitments made at international climate conferences.

Article Abstract

The understanding of the geographical variability of biomass energy is an essential requirement for the optimal location of biomass energy conversion plants. This research presents a multicriteria GIS-based assessment of biomass energy potentials and the appropriate siting of biomass plants in Nigeria. The study applies the weighted overlay multicriteria decision analysis method. Crop and forest areas, settlement (energy supply areas), shrub/grasslands, barren land, water bodies, distance from water sources, road accessibility, topography, and aspect are the criteria that were considered for locating a biomass facility in this study. The results suggest that the theoretical, technical, and economical energy potentials of crop residues are highest in the North-East region of Nigeria and estimated at 1,163.32, 399.73, and 110.56 PJ/yr, respectively, and lowest in the South-East at 52.36, 17.99, and 4.98 PJ/yr, respectively. The theoretical, technical, and economical energy potentials of forest residues are highest in the North-West, estimated at 260.18, 156.11, and 43.18 PJ/yr, respectively, and lowest in the South-East at 1.79, 1.08, and 0.30 PJ/yr, respectively. Although most areas were identified to be suitable for siting biomass plants across Nigeria, the most suitable areas are located in the northern part of the country and include Niger, Zamfara, the Federal Capital Territory, Nassarawa, Kano, Kebbi, Kaduna, and Borno State. The study supports the Nigerian bio-energy policy that proposes to effectively utilize Nigeria's non-fuelwood as a substitute for the felling of trees. This is very important to strengthen its commitment at the COP26 International Climate Conference, which is to conserve and restore its forest. Furthermore, this study will serve as a good reference for policymakers to make well-informed decisions on tackling the energy insecurity in Nigeria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10988974PMC
http://dx.doi.org/10.3389/fbioe.2024.1329878DOI Listing

Publication Analysis

Top Keywords

biomass energy
16
energy potentials
16
multicriteria gis-based
8
gis-based assessment
8
assessment biomass
8
energy
8
siting biomass
8
biomass plants
8
plants nigeria
8
theoretical technical
8

Similar Publications

Food spoilage causes significant economic losses and endangers human health. Developing novel antimicrobial agents and preservatives is urgently needed for anti-foodborne diseases and improving food storage. Zhen Zhu Cai () species are well-known edible plants among the East Asian populace that clear heat and anti-aging.

View Article and Find Full Text PDF

This study investigates the potential of phototrophic microalgae, specifically Chlorella protothecoides, for biological wastewater treatment, with a focus on the effects of air temperature and CO concentration on nutrient removal from tertiary municipal wastewater. Utilizing both the Monod and Arrhenius kinetic models, the research examines how temperature and nutrient availability influence microalgal growth and nutrient removal. The study finds that optimal biomass productivity occurs at 25 °C, with growth slowing at higher temperatures (30 °C, 40 °C, and 45 °C).

View Article and Find Full Text PDF

Efficient continuous SF/N separation using low-cost and robust metal-organic frameworks composites.

Nat Commun

January 2025

Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China.

Physisorption presents a promising alternative to cryogenic distillation for capturing the most potent greenhouse gas, SF, but existing adsorbents face challenges in meeting diverse chemical and engineering concerns. Herein, with insights into in-pore chemistry and industrial process design, we report a systematic investigation that constructed two low-cost composites pellets (Al(fum)@2%HPC and Al(fum)@5%Kaolin) coupled with an innovative two-stage Vacuum Temperature Swing Adsorption (VTSA) process for the ultra-efficient recovery of low-concentration SF from N. Record-high selectivities (> 2×10) and SF dynamic capacities (~ 2.

View Article and Find Full Text PDF

Modification and deterioration of old-growth forests by industrial forestry have seriously threatened species diversity worldwide. The loss of natural habitats increases the concentration of circulating glucocorticoids and incurs chronic stress in animals, influencing the immune system, growth, survival, and lifespan of animals inhabiting such areas. In this study, we tested whether great tit () nestlings grown in old-growth unmanaged coniferous forests have longer telomeres than great tit nestlings developing in young managed coniferous forests.

View Article and Find Full Text PDF

As one of the grave environmental hazards, soil salinization seriously limits crop productivity, growth, and development. When plants are exposed to salt stress, they suffer a sequence of damage mainly caused by osmotic stress, ion toxicity, and subsequently oxidative stress. As sessile organisms, plants have developed many physiological and biochemical strategies to mitigate the impact of salt stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!