Safely balancing a double-edged blade: identifying and mitigating emerging biosecurity risks in precision medicine.

Front Med (Lausanne)

Departments of Neurology and Biochemistry, Georgetown University Medical Center, Washington, DC, United States.

Published: March 2024

Tools and methods of precision medicine are developing rapidly, through both iterative discoveries enabled by innovations in biomedical research (e.g., genome editing, synthetic biology, bioengineered devices). These are strengthened by advancements in information technology and the increasing body of data-as assimilated, analyzed, and made accessible-and affectable-through current and emerging cyber-and systems- technologies. Taken together, these approaches afford ever greater volume and availability of individual and collective human data. Machine learning and/or artificial intelligence approaches are broadening this dual use risk; and in the aftermath of COVID-19, there is growing incentive and impetus to gather more biological data from individuals and their environments on a routine basis. By engaging these data-and the interventions that are based upon them, precision medicine offer promise of highly individualized treatments for disease and injury, optimization of structure and function, and concomitantly, the potential for (mis) using data to incur harm. This double-edged blade of benefit and risk obligates the need to safeguard human data from purloinment, through systems, guidelines and policies of a novel discipline, cyberbiosecurity, which, as coupled to ethical precepts, aims to protect human privacy, agency, and safety in ways that remain apace with scientific and technological advances in biomedicine. Herein, current capabilities and trajectories precision medicine are described as relevant to their dual use potential, and approaches to biodata security (- cyberbiosecurity) are proposed and discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10987748PMC
http://dx.doi.org/10.3389/fmed.2024.1364703DOI Listing

Publication Analysis

Top Keywords

precision medicine
16
double-edged blade
8
human data
8
safely balancing
4
balancing double-edged
4
blade identifying
4
identifying mitigating
4
mitigating emerging
4
emerging biosecurity
4
biosecurity risks
4

Similar Publications

Background: Colorectal cancer (CRC) is characterized by poor responsiveness to immune evasion and immunotherapy. RNA 7-methylguanine (m7G) modification plays a key role in tumorigenesis. However, the mechanisms by which m7G-modified RNA metabolism affects tumor progression are not fully understood, nor is the contribution of m7G-modified RNA to the CRC immune microenvironment.

View Article and Find Full Text PDF

Background: Patient-derived organoids (PDOs) represent a promising approach for replicating the characteristics of original tumors and facilitating drug testing for personalized treatments across diverse cancer types. However, clinical evidence regarding their application to esophageal cancer remains limited. This study aims to evaluate the efficacy of implementing PDOs in clinical practice to benefit patients with esophageal squamous cell carcinoma (ESCC).

View Article and Find Full Text PDF

NRP1 instructs IL-17-producing ILC3s to drive colitis progression.

Cell Mol Immunol

January 2025

Department of oncology, The Second Hospital of Tianjin Medical University; Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases; Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.

Group 3 innate lymphoid cells (ILC3s) control tissue homeostasis and orchestrate mucosal inflammation; however, the precise mechanisms governing ILC3 activity are fully understood. Here, we identified the transmembrane protein neuropilin-1 (NRP1) as a positive regulator of interleukin (IL)-17-producing ILC3s in the intestine. NRP1 was markedly upregulated in intestinal mucosal biopsies from patients with inflammatory bowel disease (IBD) compared with healthy controls.

View Article and Find Full Text PDF

Leveraging AHP and transfer learning in machine learning for improved prediction of infectious disease outbreaks.

Sci Rep

December 2024

Public Health and community medicine Department, Theodor Bilharz Research Institute, Helwan University, Cairo, Egypt.

Infectious diseases significantly impact both public health and economic stability, underscoring the critical need for precise outbreak predictions to effictively mitigate their impact. This study applies advanced machine learning techniques to forecast outbreaks of Dengue, Chikungunya, and Zika, utilizing a comprehensive dataset comprising climate and socioeconomic data. Spanning the years 2007 to 2017, the dataset includes 1716 instances characterized by 27 distinct features.

View Article and Find Full Text PDF

Circulating Exosomal MicroRNAs and Subclinical Atherosclerosis in Obstructive Sleep Apnea.

Arch Bronconeumol

December 2024

Precision Medicine in Respiratory Diseases Group, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria de Aragón (IISAragón), Zaragoza, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERes), Madrid, Spain; Respiratory Service, Hospital Universitario Miguel Servet, University of Zaragoza, Zaragoza, Spain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!