Cardiac resident macrophages (CRMs) are the main population of cardiac immune cells. The role of these cells in regeneration, functional remodeling, and repair after cardiac injury is always the focus of research. However, in recent years, their dynamic changes and contributions in physiological states have a significant attention. CRMs have specific phenotypes and functions in different cardiac chambers or locations of the heart and at different stages. They further show specific differentiation and development processes. The present review will summarize the new progress about the spatiotemporal distribution, potential developmental regulation, and their roles in cardiac development and aging as well as the translational potential of CRMs on cardiac diseases. Of course, the research tools for CRMs, their respective advantages and disadvantages, and key issues on CRMs will further be discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10985034PMC
http://dx.doi.org/10.1016/j.apsb.2023.12.018DOI Listing

Publication Analysis

Top Keywords

cardiac
8
cardiac resident
8
resident macrophages
8
spatiotemporal distribution
8
translational potential
8
cardiac diseases
8
crms
5
macrophages spatiotemporal
4
distribution development
4
development physiological
4

Similar Publications

Reintervention after aortic root replacement with allograft, xenograft, and stented bioprosthetic valves.

Cardiovasc Revasc Med

December 2024

Division of Cardiac Surgery, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America; Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America. Electronic address:

Background: There has been a significant increase in the utilization of non-mechanical valves in the aortic position over time. However, details in reinterventions after aortic root replacement (ARR) with non-mechanical prosthesis were limited in the literature, despite the potential importance of reinterventions in the lifetime management of aortic valve disease.

Methods: This is a single-center retrospective study, identifying all patients who underwent ARR with allograft, xenografts, and stented bioprosthetic valved conduit from 2010 to 2020.

View Article and Find Full Text PDF

Background: Pulmonary hypertension (pHTN) has been associated with increased morbidity and mortality after mitral Transcatheter Edge-to-Edge Repair (TEER), but the association remains uncertain. This study aims to evaluate the impact of pHTN on cardiovascular outcomes following TEER.

Methods: We searched PubMed, Scopus, and Medline to identify studies reporting outcomes after TEER in individuals with pHTN.

View Article and Find Full Text PDF

Evaluation of mid vs distal left anterior descending artery measures in coronary physiology assessment.

Cardiovasc Revasc Med

December 2024

Department of Internal Medicine and Division of Cardiology, Baylor Scott and White, Temple, TX, United States of America. Electronic address:

Background: Angina with no obstructive coronary artery disease (ANOCA) occurs in approximately 40 % of patients who undergo diagnostic coronary angiography for symptoms of angina. Coronary physiology assessment (CPA) is a guideline proven method to assess and diagnose these patients for an effective treatment strategy. There is currently no data regarding optimal wire or sensor position for CPA using bolus coronary thermodilution.

View Article and Find Full Text PDF

Rationale And Objectives: Training Convolutional Neural Networks (CNN) requires large datasets with labeled data, which can be very labor-intensive to prepare. Radiology reports contain a lot of potentially useful information for such tasks. However, they are often unstructured and cannot be directly used for training.

View Article and Find Full Text PDF

Plasma brain-related biomarkers and potential therapeutic targets in pediatric ECMO.

Neurotherapeutics

January 2025

Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA. Electronic address:

Extracorporeal membrane oxygenation (ECMO) is a technique used to support severe cardiopulmonary failure. Its potential life-saving benefits are tempered by the significant risk for acute brain injury (ABI), from both primary pathophysiologic factors and ECMO-related complications through central nervous system cellular injury, blood-brain barrier dysfunction (BBB), systemic inflammation and neuroinflammation, and coagulopathy. Plasma biomarkers are an emerging tool used to stratify risk for and diagnose ABI, and prognosticate neurofunctional outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!