The present study investigated the distribution of elements and potentially toxic elements (PTEs) in soil profiles in the southeastern region of Nigeria, where unrefined and primitive mining practices are common. Soil samples were collected from mine and non-mine sites in Ameka and Nkalagu and analyzed for total elemental concentration using portable X-ray fluorescence (pXRF). The results showed that the Ameka mine-affected soils were heavily polluted, while the Ameka non-mine-affected soils were moderately polluted. The Nkalagu mine and non-mine-affected soils were also moderately polluted. The potential ecological risk (PER) was high in the Ameka mine-affected site due to elevated As, Cu, and Pb levels, while the Ameka non-mine-affected site had a low PER. The enrichment factor (EF) values indicated more enrichment of PTEs in the mine-affected sites compared to the non-mine-affected sites. The geoaccumulation index (Igeo) showed moderate to extreme contamination in the Ameka mine-affected site with Cu, Zn, As, and Pb. In contrast, the Nkalagu mine-affected site had considerably lower contamination. The regression model showed that site characteristics alone were insufficient to explain elements and PTEs distribution, emphasizing the importance of considering soil properties in understanding their spatial patterns. The study highlights the higher concentrations of As, Cu, and Pb in the mine-affected sites compared to the non-mine areas and recommends remediation strategies for these elements and PTEs, especially in the vicinity of mine sites. Further laboratory analysis is recommended to understand the mobility of PTEs with depth for better remediation approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10987866 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e27503 | DOI Listing |
Environ Monit Assess
January 2025
Instituto de Fisiología Vegetal (INFIVE-CCT La Plata), La Plata, Buenos Aires, Argentina.
The Puna region is distinguished by its extreme environmental conditions and highly valuable mining resources. However, the unregulated management of mine tailings poses a significant threat to the ecological integrity of this region. This study assesses the environmental impacts of mine tailings at La Concordia mine (Salta province, Argentina) and examines the physiological and biochemical adaptations of Parastrephia quadrangularis (Meyen) Cabrera that enable its survival under this extreme conditions.
View Article and Find Full Text PDFToxics
December 2024
Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
There is concern over potential toxic elements (PTEs) impacting river ecosystems due to human and industrial activities. The river's water, sediment, and aquatic life are all severely affected by the release of chemical and urban waste. PTE concentrations in sediment, water, and aquatic species from river ecosystems are reported in this review.
View Article and Find Full Text PDFSci Rep
January 2025
Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran.
In this study, the contamination, ecological and human health risks as well as source apportionment of As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, and V in street dusts of different land-uses in Kermanshah, Iran were investigated. A total of 192 dust samples were taken from 16 sites and were analyzed for their elemental contents using ICP-OES. The computed mean values for the geo-accumulation index (I-geo) and the pollution index (PI) ranged from - 6.
View Article and Find Full Text PDFChemosphere
January 2025
State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China.
Hardy plants play a crucial role in restoring high-altitude tailings ponds, but the accumulation of potentially toxic elements (PTEs) and detoxification mechanisms in alpine plants are understudied. This study first investigated the cadmium (Cd) accumulation capacity and detoxification mechanisms by comparative transcriptomics with different Cd stress (0, 5, 10, 20 and 40 mg L Cd) of Koenigia tortuosa from a lead-zinc mine (4950 m above sea level) in Qinghai-Tibet Plateau. The findings revealed that, despite elevated Cd concentrations suppressed the growth of Koenigia tortuosa, the plant retained a notable ability to accumulate Cd.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/ School of Environment Science and Engineering, Hainan University, Haikou 570228, China. Electronic address:
Risk assessment of potential toxic elements (PTEs), microplastics (MPs) and microorganisms in groundwater around landfills is critical. Waste from landfills seeps into groundwater contaminating water quality, threatening groundwater safety, and negatively affecting the ecosystem. This study explored spatial and temporal changes in PTEs, MPs, and microorganisms in the groundwater around a closed landfill.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!