A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of the Polar Head Type on the Surface Adsorption and Tribofilm Formation of Organic Friction Modifiers in Water-Based Lubricants. | LitMetric

Carboxylic acids make up a well-known group of organic friction modifiers (OFMs). OFMs can present different types of polar heads that can eventually lead to different surface adsorption properties and tribological responses. Therefore, the goal of this work is to study the effects of the polar head type on the frictional and wear performances of carboxylic acids in a water-based lubricant. Lauric acid (C12) was chosen as the reference OFM, and methyl laurate and monolaurin were chosen for the comparison. Sliding friction tests were performed on stainless steel against alumina balls under boundary lubricating conditions. The effect of the adsorbed layers and the tribofilm formation was studied by varying the initial maximum hertzian contact pressure, i.e., tests were performed at 1.97 and 0.66 GPa. At the lowest contact pressure, not enough load is applied to obtain enough plastic deformation on the asperity contacts. In this case, a combination of asperity contacts and a thick fluid film formation results in a lack of tribofilm formation, whereas at the highest contact pressure, tribofilms are formed in the asperity contact through tribochemical reactions. Methyl laurate showed no adsorption on the surface, and it was not tested further. C12 and monolaurin showed good adsorption, but the adsorbed layers had different viscoelastic properties. Micro and macrotribological tests showed good frictional behavior for C12 at 0.5 wt % concentration due to the good viscoelastic properties of its adsorbed layer. The adsorbed layer of monolaurin did not show good friction-reducing ability during the micro tribological tests due to its poorer viscoelastic properties. However, the macro tribological tests revealed that monolaurin forms a robust tribofilm protecting the surface from wear and efficiently reducing friction at a concentration of 0.5 wt % resulting in the lowest wear and friction values as observed in this study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11025113PMC
http://dx.doi.org/10.1021/acs.langmuir.3c03729DOI Listing

Publication Analysis

Top Keywords

tribofilm formation
12
contact pressure
12
viscoelastic properties
12
polar head
8
head type
8
surface adsorption
8
organic friction
8
friction modifiers
8
carboxylic acids
8
methyl laurate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!