A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: Network is unreachable

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

PGC-1α regulates the interplay between oxidative stress, senescence and autophagy in the ageing retina important in age-related macular degeneration. | LitMetric

We previously showed that mice with knockout in the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) gene encoding the PGC-1α protein, and nuclear factor erythroid 2 like 2 (NFE2L2) gene, exhibited some features of the age-related macular degeneration (AMD) phenotype. To further explore the mechanism behind the involvement of PGC-1α in AMD pathogenesis we used young (3-month) and old (12-month) mice with knockout in the PPARGC1A gene and age-matched wild-type (WT) animals. An immunohistochemical analysis showed age-dependent different expression of markers of oxidative stress defence, senescence and autophagy in the retinal pigment epithelium of KO animals as compared with their WT counterparts. Multivariate inference testing showed that senescence and autophagy proteins had the greatest impact on the discrimination between KO and WT 3-month animals, but proteins of antioxidant defence also contributed to that discrimination. A bioinformatic analysis showed that PGC-1α might coordinate the interplay between genes encoding proteins involved in antioxidant defence, senescence and autophagy in the ageing retina. These data support importance of PGC-1α in AMD pathogenesis and confirm the utility of mice with PGC-1α knockout as an animal model to study AMD pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10992479PMC
http://dx.doi.org/10.1111/jcmm.18051DOI Listing

Publication Analysis

Top Keywords

senescence autophagy
16
amd pathogenesis
12
oxidative stress
8
autophagy ageing
8
ageing retina
8
age-related macular
8
macular degeneration
8
mice knockout
8
ppargc1a gene
8
pgc-1α amd
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!