Light-emitting diodes (LEDs), pivotal for solid-state illumination (SSL) and highly regarded as potential candidates in visible light communication (VLC) systems, have garnered significant interest as a solution to alleviate the congested radio frequency spectrum in next-generation communications. Addressing the challenge of extremely limited bandwidth due to the low response of phosphor in conventional illumination, our research focuses on an AlGaInP-based amber LED. This LED represents a promising avenue for phosphor-free, high-speed VLC applications when used in conjunction with the prevalent blue LED technology based on nitride materials. The fabricated AlGaInP amber LED, with a mesa diameter of 100 µm, has undergone comprehensive optoelectronic property and transmission performance characterization. We have successfully demonstrated a proof-of-concept for VLC using the amber LED, achieving a data transmission rate of 2.94 Gb/s that complies with the forward-error-correction (FEC) standard of 3.8 × 10, utilizing adaptive bit and power loading with discrete multitone (BPL-DMT) modulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.520892 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!