In this work, we propose a practical solution to visible vortex laser emission at 532 nm based on second harmonic generation (SHG) in a well-designed waveguide-grating structure. Such an integrated structure is fabricated by femtosecond laser direct writing (FsLDW) in an LBO crystal. Confocal micro-Raman spectroscopy is employed for detailed analysis of FsLDW-induced localized crystalline damage. By optical excitation at 1064 nm, the guiding properties, SHG performance, as well as vortex laser generation of the waveguide-grating hybrid structure are systematically studied. Our results indicate that FsLDW waveguide-grating emitter is a reliable design holding great promise for nonlinear vortex beam generation in integrated optics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.519819 | DOI Listing |
Natl Sci Rev
February 2025
State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China.
To achieve logic operations via Majorana braiding, positional control of the Majorana bound states (MBSs) must be established. Here we report the observation of a striped surface charge order coexisting with superconductivity and its interaction with the MBS in the topological superconductor 2M-WS, using low-temperature scanning tunneling microscopy. By applying an out-of-plane magnetic field, we observe that MBSs are absent in vortices in the region with stripe order.
View Article and Find Full Text PDFDirac-vortex cavities have single-mode emitting, scalable mode areas, arbitrary mode degeneracies, and vector-beam vertical emission, which attract more and more researchers' attention. Here, we demonstrate the single-mode of two-dimensional transverse magnetic (TM) Dirac-vortex topological cavity modes that are not only generally available for high power topological surface-emitting lasers (TCSEL) but also are one of the excellent candidates for refractive index sensors. The principle for winding number is studied, and the scaling laws are shown with cavity mode diameters.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
Optical vortices possess a helical phase wavefront with central phase dislocation and orbital angular momentum. We demonstrated three-dimensional microstructure formation using a femtosecond optical vortex beam. Two-photon polymerization of photocurable resin was induced by long-term exposure, resulting in the fabrication of cylindrical structures.
View Article and Find Full Text PDFACS Photonics
December 2024
Graduate School and Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395, Japan.
Whispering-gallery mode (WGM) resonators, renowned for their high Q-factors and narrow line widths, are widely utilized in integrated photonics. Integrating diffraction gratings onto WGM cavities has gained significant attention because these gratings function as azimuthal refractive index modulators, enabling single-mode WGM emissions and supporting beams with orbital angular momentum (OAM). The introduction of curved grating structures facilitates guided mode resonances by coupling high-order diffracted waves with leaking modes from the waveguide.
View Article and Find Full Text PDFNanophotonics
April 2024
School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
The generation of vector beams using metasurfaces is crucial for the manipulation of light fields and has significant application potential, ranging from classical physics to quantum science. This paper introduces a novel dielectric metasurface composed of quarter-wave plate (QWP) meta-atoms, known as a QWP metasurface, designed to generate focused vector beams (VBs) of Bell-like states under right circularly polarized illumination. The propagation phase imparted on both the co- and cross-polarized components of the output field constructs hyperbolic and helical phase profiles with topological charge , whereas the Pancharatnam-Berry (PB) phase acts only on the cross-polarized component to construct another helical phase profile with topological charge .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!