Metasurfaces hold great promise for terahertz (THz) chiral-optical devices. Here, we proposed a chiral THz metasurface with quasi-bound state in the continuum (BIC) for maximum chirality. By exploiting structural perturbations of the dipole displacement and the diverging angle for the THz metasurface, the symmetry-protected BIC transforms into quasi-BIC. The critical coupling condition is satisfied by the introduction of graphene, enabling the theoretical maximum absorption of the quasi-BIC. Subsequently, the perturbations are balanced to obtain maximum chirality. The numerical simulations show that the THz metasurface exhibits strong linear chirality with the circular dichroism (CD) of 0.99 at the quasi-BIC. Additionally, the chiral third harmonic generation (THG) is achieved, characterized by high efficiency up to 19% and strong THG-CD as high as 0.99. It is expected that the THz metasurfaces has great potential for applications in chiral sensing and imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.519234 | DOI Listing |
Sci Adv
January 2025
Institute of Physics, Johannes Gutenberg University Mainz, Mainz 55128, Germany.
The observation of spin-dependent transmission of electrons through chiral molecules has led to the discovery of chiral-induced spin selectivity (CISS). The remarkably high efficiency of the spin polarizing effect has recently gained substantial interest due to the high potential for future sustainable hybrid chiral molecule magnetic applications. However, the fundamental mechanisms underlying the chiral-induced phenomena remain to be understood fully.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
Chiral molecules are ubiquitous in nature and biological systems, where the unique optical and physical properties of chiral nanoparticles are closely linked to their shapes. Synthesizing chiral plasmonic nanomaterials with precise structures and tunable sizes is essential for exploring their applications. This study presents a method for growing three-dimensional chiral gold nanoflowers (Au NFs) derived from trisoctahedral (TOH) nanocrystals using D-cysteine and L-cysteine as chiral inducers.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Jiangnan University, International Joint Research Laboratory for Biointerface and Biodetection, lihu road 1800#, 214122, Wuxi, CHINA.
Circularly polarized luminescence (CPL) has garnered significant research attention. Achieving a high luminescence dissymmetry factor (glum) is a key challenge in this field. Herein, we reported, for the first time, the fabrication of a chiral assembled film consisting of chiral D-/L-Selenium nanoparticles (D-/L-Se NPs) and DSPE-PEG-NH2 modified upconversion nanoparticles (DPNUCNPs) with remarkable CPL properties that were generated by the interfacial self-assembly technique.
View Article and Find Full Text PDFNon-invasive glucose monitoring is crucial for diabetes management. This study explores the use of photoacoustic (PA) signals based on optical rotation estimation at multiple depths for detection of glucose concentrations. Experiments were performed with glucose samples mixed in bovine serum albumin with different polarization incidences-vertical (V), 45° linear (P), and right circular (R) polarization.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St. Andrews, KY16 9ST, U.K.
The [1,2]-rearrangement of allylic ammonium ylides is traditionally observed as a competitive minor pathway alongside the thermally allowed [2,3]-sigmatropic rearrangement. Concerted [1,2]-rearrangements are formally forbidden, with these processes believed to proceed through homolytic C-N bond fission of the ylide, followed by radical-radical recombination. The challenges associated with developing a catalytic enantioselective [1,2]-rearrangement of allylic ammonium ylides therefore lie in biasing the reaction pathway to favor the [1,2]-reaction product, alongside controlling a stereoselective radical-radical recombination event.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!