Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We propose a design for an efficient spin-photon interface to a color center in a diamond microdisk. The design consists of a silicon oxynitride triangular lattice overlaid on a diamond microdisk without any aligmnent between the layers. This enables vertical emission from the microdisk into low-numerical aperture modes, with quantum efficiencies as high as 46% for a tin vacancy (SnV) center. Our design is robust to manufacturing errors, potentially enabling large scale fabrication of quantum emitters coupled to optical collection modes. We also introduce a novel approach for optimizing the free space performance of our device using a dipole model, achieving comparable results to full-wave finite difference time domain simulations with 7 · 10 reduction in computational time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.515620 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!