In contrast to conventional X-ray imaging systems, the lobster eye lens, serving as a pivotal component for X-ray focusing, presents the potential for downsizing X-ray backscatter imaging systems. This study reports the successful implementation of a pioneering non-contact staring X-ray backscatter imaging experiment, with the target positioned 1.5 meters away from the system and employing a tube voltage of 60 kV for the X-ray light source. The system is built upon a novel high aspect ratio (500) meridian lobster eye lens, employing a laboratory low illuminance desktop light source and a commercial X-ray detector to achieve high-resolution focused imaging of hard X-rays. Point spread function testing and a series of imaging experiments were carried out to assess the resolution and optimal imaging photon energy of the proposed system. Furthermore, according to the characteristics of the point spread function of the cross image of the lobster eye lens, we proposed an image processing algorithm. The experimental results demonstrate that, after processing, the Structural Similarity (SSIM) Index of the backscatter image and the ground truth image can be improved from an average of 0.0526 to 0.5758. Our research significantly contributes to the advancement of a new generation of X-ray backscatter imaging systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.514941 | DOI Listing |
Heliyon
January 2025
Division of Polymer Chemistry, Department of Chemistry, Atomic Energy Commission, P.O. Box: 6091, Damascus, Syrian Arab Republic.
The degree of sulfonation (DS) is a key property of sulfonated polymers, as it significantly influences their swelling behaviour, conductivity and mechanical properties. Accurately determining the DS is essential for optimizing these materials for various applications. In this work, the DS of sulfonated poly (ether ether ketone) (SPEEK) was evaluated using a combination of analytical techniques, including titration, back titration, Fourier Transform Infrared (FTIR), Ultra-Violet (UV) and proton nuclear magnetic resonance (H NMR) spectroscopies, Thermogravimetric analysis (TGA), Rutherford backscattering (RBS) and particle induced X-ray emission (PIXE) analysis.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland.
This article shows the results of research conducted on the corrosion resistance of the FeAl (Fe40Al5Cr0.2TiB) alloy in two variants: the alloy after casting and after homogenization annealing (1000 °C, 93 h). Analysis of the microstructure of these alloys was conducted on the light microscope, and the phase composition was determined by X-ray diffraction.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Institute of Technology, University of the National Education Commission, Podchorążych 2, 30-084 Kraków, Poland.
In this work, three composite materials based on Terfenol-D and PZT-type material were obtained with a classic sintering method using a combination of 0-3 phases, where the ferroelectric phase was doped PZT material (P) and the magnetic phase was Terfenol-D (T). The percentage of P and T components in the composites was variable, i.e.
View Article and Find Full Text PDFDiagnostics (Basel)
January 2025
Department of Radiology, Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary.
we evaluated regression models based on quantitative ultrasound (QUS) parameters and compared them with a vendor-provided method for calculating the ultrasound fat fraction (USFF) in metabolic dysfunction-associated steatotic liver disease (MASLD). We measured the attenuation coefficient (AC) and the backscatter-distribution coefficient (BSC-D) and determined the USFF during a liver ultrasound and calculated the magnetic resonance imaging proton-density fat fraction (MRI-PDFF) and steatosis grade (S0-S4) in a combined retrospective-prospective cohort. We trained multiple models using single or various QUS parameters as independent variables to forecast MRI-PDFF.
View Article and Find Full Text PDFSci Rep
January 2025
I-Form Advanced Manufacturing Research Centre, Dublin City University, Dublin, Ireland.
In the realm of materials science and engineering, the pursuit of advanced materials with tailored properties has been a driving goal behind technological progress. Scientific interest in laser powder bed fusion (L-PBF) fabricated NiTi alloy has in recent times seen an upsurge of activity. In this study, we investigate the impact of varying volume energy density (VED) during L-PBF on the microstructure and corrosion behaviour of NiTi alloys in both scan (XY) and built (XZ) planes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!