Laser-guided detector and infrared detection have attracted increasing attention in a wide range of research fields, including multispectral detection, radiative cooling, and thermal management. Previously reported absorbers presented shortcomings of lacking either tunability or compatibility. In this study, a metamaterial perfect absorber based on a Helmholtz resonator and fractal structure is proposed, which realizes tunable perfect absorptivity ( >0.99, >0.99) of guided-laser radar dual operating bands (1.06 µm and 10.6 µm) and a low infrared average emissivity (¯ =0.03,¯ =0.31) in two atmospheric windows for compatible camouflage. The proposed perfect absorber provides a dynamically tunable absorptivity without structural changes and can be applied to optical communication, military stealth or protection, and electromagnetic detection.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.518073DOI Listing

Publication Analysis

Top Keywords

perfect absorber
12
compatible camouflage
8
guided-laser radar
8
metamaterial perfect
8
camouflage dual-band
4
dual-band guided-laser
4
radar infrared
4
infrared metamaterial
4
perfect
4
absorber laser-guided
4

Similar Publications

Freshness in Salmon by Hand-Held Devices: Methods in Feature Selection and Data Fusion for Spectroscopy.

ACS Food Sci Technol

December 2024

National Measurement Laboratory: Centre of Excellence in Agriculture and Food Integrity, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, U.K.

Salmon fillet was analyzed via hand-held optical devices: fluorescence (@340 nm) and absorption spectroscopy across the visible and near-infrared (NIR) range (400-1900 nm). Spectroscopic measurements were benchmarked with nucleotide assays and potentiometry in an exploratory set of experiments over 11 days, with changes to spectral profiles noted. A second enlarged spectroscopic data set, over a 17 day period, was then acquired, and fillet freshness was classified ±1 day via four machine learning (ML) algorithms: linear discriminant analysis, Gaussian naïve, weighted -nearest neighbors, and an ensemble bagged tree method.

View Article and Find Full Text PDF

All-dielectric metasurface (ADM) absorbers driven by quasi-bound states in the continuum (BIC) are critical for high-performance optoelectronic devices due to their ability to offer high -factor absorption. However, these all-dielectric metasurfaces usually require the aid of degenerate critical coupling schemes or back-metal reflective layers to achieve high absorption, which often suffers from limitations such as sensitive geometrical parameters, ohmic losses, and low -factors. This work presents an ADM for high- near-perfect light absorption, which consists of double Si nanorods and SiO/TaO multilayers.

View Article and Find Full Text PDF

The increasing demand for controlling electromagnetic waves has led to the construction of a variety of metasurface absorbers with different functionalities. In this Letter, we designed a kind of single-layer metasurfaces with delicately designed hybrid magnetic meta-atoms (HMMAs), which can be operated as perfect absorbers (PAs) for the electromagnetic wave incident at a specified direction, but at the mirror symmetric direction, the nearly total reflection is achieved. This remarkable nonreciprocal phenomenon arises from the time-reversal symmetry (TRS) breaking nature of magnetic surface plasmon as well as the lattice Kerker effect due to the interaction of HMMAs in the single-layer metasurfaces.

View Article and Find Full Text PDF

Ultra-Broadband Perfect Absorbers Based on Biomimetic Metamaterials with Dual Coupling Gradient Resonators.

Adv Mater

December 2024

Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang, 110819, China.

Ultra-broadband metamaterial absorbers can achieve near-perfect absorption of omnidirectional electromagnetic waves, crucial for light utilization and manipulation. Traditional ultra-broadband metamaterials rely on the superposition of different resonator units either in the plane or in perpendicular directions to broaden absorption peaks. However, this approach is subject to quantity restrictions and complicates the fabrication process.

View Article and Find Full Text PDF

A Compact Low-Frequency Acoustic Perfect Absorber Constructed with a Folded Slit.

Materials (Basel)

December 2024

Xi'an Key Laboratory of Extreme Environment and Protection Technology, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China.

Tunable perfect acoustic absorption at subwavelength thickness has been a prominent topic in scientific research and engineering applications. Although metamaterials such as labyrinthine metasurfaces and coiling-up-space metamaterials can achieve subwavelength low-frequency acoustic absorption, efficiently realizing tunable absorption under uniform and limited size conditions remains challenging. In this paper, we introduce a folded slit to enhance the micro-slit acoustic absorber, effectively improving its low-frequency acoustic absorption performance and successfully achieving a perfect acoustic absorption coefficient of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!