Monoculture switchgrass and restored prairie are promising perennial feedstock sources for bioenergy production on the lands unsuitable for conventional agriculture. Such lands often display contrasting topography that influences soil characteristics and interactions between plant growth and soil C gains. This study aimed at elucidating the influences of topography and plant systems on the fate of C originated from switchgrass plants and on its relationships with soil pore characteristics. For that, switchgrass plants were grown in intact soil cores collected from two contrasting topographies, namely steep slopes and topographical depressions, in the fields in multi-year monoculture switchgrass and restored prairie vegetation. The C pulse labeling allowed tracing the C of switchgrass origin, which X-ray computed micro-tomography enabled in-detail characterization of soil pore structure. In eroded slopes, the differences between the monoculture switchgrass and prairie in terms of total and microbial biomass C were greater than those in topographical depressions. While new switchgrass increased the CO emission in depressions, it did not significantly affect the CO emission in slopes. Pores of 18-90 µm Ø facilitated the accumulation of new C in soil, while > 150 µm Ø pores enhanced the mineralization of the new C. These findings suggest that polyculture prairie located in slopes can be particularly beneficial in facilitating soil C accrual and reduce C losses as CO.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10991283 | PMC |
http://dx.doi.org/10.1038/s41598-024-58444-6 | DOI Listing |
Plant Physiol
January 2025
Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, USA.
Omega (ω)-3 fatty acids (FAs) are essential components of cell membranes that also serve as precursors of numerous regulatory molecules. α-linolenic acid (ALA), one of the most important ω3 FAs in plants, is synthesized in both the plastid and extraplastidial compartments. FA Desaturase (FAD) 3 is an extraplastidial enzyme that converts linoleic acid (LA) to ALA.
View Article and Find Full Text PDFSci Data
January 2025
Department of Botany and Evolutionary Ecology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, Olsztyn, 10-719, Poland.
Riccia sorocarpa Bisch., commonly known as common crystalwort, is a plant belonging to the Marchantiales order with a cosmopolitan distribution among a wide range of habitats: fields, gardens, waste ground, on paths, cliff tops, and thin soil over rocks or by water bodies. However, research into the genetic aspects of this species is limited.
View Article and Find Full Text PDFSci Rep
January 2025
College of Natural and Computational Sciences, University of Gondar, P.O. Box 196, Gondar, Ethiopia.
The conversion of water hyacinth into biochar offers a sustainable solution to mitigate its proliferation and enhances its potential as a soil amendment for agriculture. This study examined the physicochemical properties of water hyacinth biochar (WHBC) and its impact on soil fertility. Water hyacinth (Eichhornia crassipes) was pyrolyzed at 300 °C for 40 minute with restricted airflow (2-3 m/s), producing biochar with desirable properties and a yield of 44.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Civil Engineering, Delhi Technological University, New Delhi, 110089, India.
Soil reinforcement is one of the techniques used to enhance the engineer characteristics of the soil. Various techniques can be employed to stabilise problematic soils, such as soft clay. These include the utilisation of portland cement, lime, fly ash, ground freezing, jet grouting, prefabricated vertical drains, and thermal approaches.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China. Electronic address:
Slow-release hydrogel can effectively improve nutrient content of soil and reduce evaporation rate of the water. However, petroleum-based hydrogels will cause secondary pollution to soil. Herein, the nitrogen content of aminated lignin reached 7 % by Mannish reaction with microwave heating, and the influence of microwave heating on the aminated process of lignin was investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!