A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Phylogeny and structural modeling of the transcription factor CsqR (YihW) from Escherichia coli. | LitMetric

CsqR (YihW) is a local transcription factor that controls expression of yih genes involved in degradation of sulfoquinovose in Escherichia coli. We recently showed that expression of the respective gene cassette might be regulated by lactose. Here, we explore the phylogenetic and functional traits of CsqR. Phylogenetic analysis revealed that CsqR had a conserved Met25. Western blot demonstrated that CsqR was synthesized in the bacterial cell as two protein forms, 28.5 (CsqR-l) and 26 kDa (CsqR-s), the latter corresponding to start of translation at Met25. CsqR-s was dramatically activated during growth with sulfoquinovose as a sole carbon source, and displaced CsqR-l in the stationary phase during growth on rich medium. Molecular dynamic simulations revealed two possible states of the CsqR-s structure, with the interdomain linker being represented by either a disordered loop or an ɑ-helix. This helix allowed the hinge-like motion of the N-terminal domain resulting in a switch of CsqR-s between two conformational states, "open" and "compact". We then modeled the interaction of both CsqR forms with putative effectors sulfoquinovose, sulforhamnose, sulfoquinovosyl glycerol, and lactose, and revealed that they all preferred the same pocket in CsqR-l, while in CsqR-s there were two possible options dependent on the linker structure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10991401PMC
http://dx.doi.org/10.1038/s41598-024-58492-yDOI Listing

Publication Analysis

Top Keywords

transcription factor
8
csqr yihw
8
escherichia coli
8
csqr
6
csqr-s
5
phylogeny structural
4
structural modeling
4
modeling transcription
4
factor csqr
4
yihw escherichia
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!