In contact lens (CL) wear, dehydration needs to be tailored to avoid dryness and related symptoms. In this view, this work aims to assess and compare the in-vitro dehydration kinetics of five CL materials, including the newly developed Kalifilcon A CL. At 36 °C and 60% relative humidity, the in-vitro dehydration kinetics of the different CLs were compared using a gravimetric method. CLs were analyzed either after a rinse of a few seconds in preservative-free saline solution or after a 24-h incubation in the same solution. A model based on the Fick diffusion equation was employed to deduce a water kinetics coefficient, providing insights into water diffusion within the polymeric matrix. The study reveals that all materials exhibit a non-Fickian dehydration behavior, with significant differences in dehydration kinetics coefficients and dehydration rate slopes. Etafilcon A and Omafilcon A, both hydrogel CLs, exhibit a similar behavior, different compared to the pattern shown by Senofilcon A and Delefilcon A, silicone-hydrogel CLs. Notably, Kalifilcon A, despite being a silicone-hydrogel, displays a hydration behavior reminiscent of hydrogel CLs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10991492 | PMC |
http://dx.doi.org/10.1038/s41598-024-55937-2 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 10120, Thailand.
A single-component flavin-dependent halogenase, AetF, has emerged as an attractive biocatalyst for catalyzing halogenation. However, its flavin chemistry remains unexplored and cannot be predicted due to its uniqueness in sequence and structure compared to other flavin-dependent monooxygenases. Here, we investigated the flavin reactions of AetF using transient kinetics.
View Article and Find Full Text PDFJ Bioenerg Biomembr
January 2025
Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka, 560-8531, Japan.
Fibrillation of the amyloid beta (Aβ) peptide has often been associated with neurodegenerative pathologies such as Alzheimer's disease. In this study we examined the influence of several potential compositions of the lipid membrane on Aβ fibrillation by using liposomes as a basic model membrane. Firstly, it was revealed that Aβ fibrillation kinetics were enhanced and had the potential to occur at a faster rate on more fluid membranes compared to solid membranes.
View Article and Find Full Text PDFACS Catal
December 2024
Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States.
Lanthipeptides are ribosomally synthesized and post-translationally modified peptides (RiPPs) characterized by the presence of thioether cross-links called lanthionine and methyllanthionine, formed by dehydration of Ser/Thr residues and Michael-type addition of Cys side chains onto the resulting dehydroamino acids. Class II lanthipeptide synthetases are bifunctional enzymes responsible for both steps, thus generating macrocyclic natural products. ProcM is part of a group of class II lanthipeptide synthetases that are known for their remarkable substrate tolerance, having large numbers of natural substrates with highly diverse peptide sequences.
View Article and Find Full Text PDFNanotechnology
January 2025
School of Chemistry and Life Sciences, Hanoi University of Science and Technology, Hanoi, Vietnam.
In this study, the mixture of zinc acetate dehydrates and boric acid was pyrolyzed in zeolite X to prepare novel B/ZnO/zeolite nanocomposites for the enhanced removal of tartrazine (TA) in aqueous environment. The composites are porous material with a relatively large pore size (35.3 nm).
View Article and Find Full Text PDFACS Nano
December 2024
Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China.
Solution-phase epitaxy is a versatile method to synthesize functional nanomaterials with customized properties, where supports play a central role as they not only serve as nucleation templates but also greatly affect the local electronic structures. However, developing functional supports remains a great challenge. Herein, inspired by the commonly observed epitaxy of minerals in the natural environment, we report using calcination-modified kaolinite as the support for the epitaxial growth of hexagonal CoO nanoparticles (-CoO NPs), which enables over 40 times higher mass-specific activity toward HO electrochemical activation than the counterpart without the support.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!