In this paper, we carried out a numerical analysis of the fluid dynamics and heat transfer occurring between two parallel disks. The study accounts for the impact of temperature-dependent fluid viscosity and thermal conductivity. We systematically investigated various parameters, including viscosity, thermal conductivity, rotational behavior (rotation or counter-rotation), and the presence of stretching, aiming to comprehend their effects on fluid velocity, temperature profiles, and pressure distributions. Our research constructs a mathematical model that intricately couples fluid heat transfer and pressure distribution within the rotating system. To solve this model, we employed the 'Particle Swarm Optimization' method in tandem with the finite difference approach. The results are presented through visual representations of fluid flow profiles, temperature, and pressure distributions along the rotational axis. The findings revealed that the change in Casson factor from 2.5 to 1.5 resulted in a reduction of skin friction by up to 65%, while the change in local Nusselt number was minimal. Furthermore, both the viscosity variation parameter and thermal conductivity parameters were found to play significant roles in regulating both skin friction and local Nusselt number. These findings will have practical relevance to scientists and engineers working in fields related to heat management, such as those involved in rotating gas turbines, computer storage devices, medical equipment, space vehicles, and various other applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10991530 | PMC |
http://dx.doi.org/10.1038/s41598-024-56707-w | DOI Listing |
ACS Appl Mater Interfaces
January 2025
College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
Thermoelectric technology enables the direct and reversible conversion of heat into electrical energy without air pollution. Herein, the stability, electronic structure, and thermoelectric properties of methoxy-functionalized MC(OMe) (M = Sc, Ti, V, Cr, Y, Zr, Nb, Mo, Hf, Ta, and W) were systematically investigated using first-principles calculations and semiclassical Boltzmann transport theory. All MXenes, except those with M = Cr, Mo, and W, can be synthesized by substituting Cl- and Br-functionalized MXenes with deprotonated methanol, with stability governed by the M-O bond strength.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Center for Phononics and Thermal Energy Science, School of Physics Science and Engineering, Tongji University, Shanghai 20092, China.
In contrast to normal diffusion processes, thermal conduction in one-dimensional systems is anomalous. The thermal conductivity is found to vary with the length as κ∼L^{α}(α>0), but there is a long-standing debate on the value α. Here, we present a canonical example of this behavior in polymer-grafted spherical nanoparticle (GNP) melts at fixed grafting density and nanoparticle radius.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.
We propose a mechanism to obtain chiral phononlike excitations from the bond-dependent magnetoelastic couplings in the absence of out-of-plane magnetization and magnetic fields. By mapping the hybrid excitation to its phononic analog, we reveal the impact of the lattice symmetry on the origin of the chirality. In the example of a triangular lattice ferromagnet, we recognize that the system is equivalent to the class D of topological phonons, and show the tunable chirality and topology by an in-plane magnetic field.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA.
Two-Dimensional transition metal dichalcogenides have been the subject of extensive attention thanks to their unique properties and atomically thin structure. Because of its unprecedented room-temperature magnetic properties, iron-doped MoS (Fe:MoS) is considered the next-generation quantum and magnetic material. It is essential to understand Fe:MoS's thermal behavior since temperature and thermal load/activation are crucial for their magnetic properties and the current nano and quantum devices have been severely limited by thermal management.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA.
AgSbTe is a promising p-type thermoelectric material operating in the mid-temperature regime. To further enhance its thermoelectric performance, previous research has mainly focused on reducing lattice thermal conductivity by forming ordered nanoscale domains for instance. However, the relatively low power factor is the main limitation affecting the power density of AgSbTe-based thermoelectric devices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!